Our previous study demonstrated that predominant feeding inhibitory effects were found in the crude extracts of foregut and midgut of the silkworm Bombyx mori larvae. To address the entero-intestinal control crucial for the regulation of insect feeding behavior, the present study identified and functionally characterized feeding inhibitory peptides from the midgut of B. mori larvae. Purification and structural analyses revealed that the predominant inhibitory factors in the crude extracts were allatotropin (AT) and GSRYamide after its C-terminal sequence. In situ hybridization revealed that AT and GSRYamide were expressed in enteroendocrine cells in the posterior and anterior midgut, respectively. Receptor screening using Ca2+-imaging technique showed that the B. mori neuropeptide G protein-coupled receptor (BNGR)-A19 and -A22 acted as GSRYamide receptors and BNGR-A5 acted as an additional AT receptor. Expression analyses of these receptors and the results of the peristaltic motion assay indicated that these peptides participated in the regulation of intestinal contraction. Exposure of pharynx and ileum to AT and GSRYamide inhibited spontaneous contraction in ad libitum-fed larvae, while exposure of pharynx to GSRYamide did not inhibit contraction in non-fed larvae, indicating that the feeding state changed their sensitivity to inhibitory peptides. These different responses corresponded to different expression levels of their receptors in the pharynx. In addition, injection of AT and GSRYamide decreased esophageal contraction frequencies in the melamine-treated transparent larvae. These findings strongly suggest that these peptides exert feeding inhibitory effects by modulating intestinal contraction in response to their feeding state transition, eventually causing feeding termination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602202PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219050PLOS

Publication Analysis

Top Keywords

intestinal contraction
12
feeding inhibitory
12
feeding
8
feeding behavior
8
silkworm bombyx
8
bombyx mori
8
inhibitory effects
8
crude extracts
8
mori larvae
8
inhibitory peptides
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!