The current study measured the influence of milk of subclinically infected glands by different bacteria species on the cow's milk. The effects of bacterial infection or inflammation on gland milk yield were related to the bacteria species that caused the infection. The volume of milk of the inflamed gland from the cow's milk yield was significantly lower (P<0.001) for the glands previously infected by Escherichia coli (PIEc) and those infected with Streptococcus dysgalactiae. Coagulation properties, rennet clotting time (RCT) and curd firmness (CF) also depended on the bacteria causing the infection. RCT values of all the inflamed glands were significantly longer (P<0.001) and CF values were significantly lower than that of the healthy ones. Moreover, in the whole milk, CF was also significantly lower and not proportional to the volume of the milk from the inflamed gland of the cow's milk. Calculation of the predicted 40% dry matter curd weight (PCW) on the cow level, including the healthy and inflamed glands or the healthy glands alone, showed that for 10 of 13 PIEc cows, the presence of the affected gland's milk in the whole cow milk resulted in a lower PCW value. Likewise, 7 of 20 cows infected by S. dysgalactiae had negative delta values. Unlike the latter bacteria, PCW from milk of glands infected with CNS increased, although in a lower magnitude than in the healthy glands. No correlation was found between logSCC in the whole cow milk (healthy and inflamed glands) and PCW.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602173PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213817PLOS

Publication Analysis

Top Keywords

bacteria species
12
cow's milk
8
milk yield
8
milk
7
milk quality
4
quality milk
4
milk transformation
4
transformation parameters
4
parameters infected
4
infected mammary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!