A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Covalent Attachment and Characterization of Perylene Monolayers on Si(111) and TiO for Electron-Selective Carrier Transport. | LitMetric

Covalent Attachment and Characterization of Perylene Monolayers on Si(111) and TiO for Electron-Selective Carrier Transport.

Langmuir

Department of Chemistry and Biochemistry; Life Science and Bioengineering Center , Worcester Polytechnic Institute , 100 Institute Road, Worcester , Massachusetts 01609 , United States.

Published: July 2019

We functionalized chemically oxidized Si(111) and TiO surfaces with covalently attached rylene molecules and demonstrated further chemical conversion of the attached species. Base-catalyzed activation of perylene tetracarboxylic dianhydride (PTCDA) preceded reaction with phenylaminosilane-terminated surfaces, yielding surface-bound perylene via an imide linkage. Transflection infrared (IR) spectroscopy of the carbonyl vibrational region elucidated the presence of anhydride, imide, and ester species following each reaction stage. The presence of both anhydride and imide IR features following reaction with PTCDA validates successful perylene attachment. Subsequent functionalization of the surface-attached perylenes yielded IR spectra with little or no detectable anhydride features that indicate successful conversion to ester or imide species based on respective reactions with alkyl bromides or aryl amines. X-ray photoelectron spectroscopy quantified fractional coverages of surface-attached perylene species following a post-deposition derivatization with fluorine-containing alkyl bromides and with anilines. Overlayer model interpretation of the photoelectron results determined a perylene surface coverage of ∼15% relative to the surface density of Si(111) atop sites and a ∼10% surface coverage of imide-terminated perylene species. The interpreted coverage data yield an approximate conversion efficiency for the anhydride-to-imide derivatization at surface-attached perylenes of ∼66%. We discuss the present results in terms of possible coverage and packing on oxide-free silicon surfaces and the utilization of covalently attached rylene species as electron-transporting and hole-blocking connecting layers in molecular electronics and tandem-junction photovoltaic designs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b00739DOI Listing

Publication Analysis

Top Keywords

si111 tio
8
covalently attached
8
attached rylene
8
presence anhydride
8
anhydride imide
8
surface-attached perylenes
8
alkyl bromides
8
perylene species
8
surface coverage
8
perylene
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!