Through a nature-inspired layer-by-layer assembly process, we developed a unique multifunctional tissue scaffold that consists of porous polyurethane substrate and nanoscale chitosan/graphene oxide hybrid coating. Alternative layers of drug-laden chitosan and graphene oxide nanosheets were held together through strong electrostatic interaction, giving rise to a robust multilayer architecture with control over structural element orientation and chemical composition at nanoscale. Combined pH-controlled co-delivery of multiple therapeutic agents and photothermal therapy has been achieved by our scaffold system. The new platform technology can be generalized to produce other tissue scaffold systems and may enable potential multimodal therapeutic applications such as bone cancer managements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b04278 | DOI Listing |
Biomater Sci
January 2025
Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications.
View Article and Find Full Text PDFVet Res Forum
November 2024
Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
Scaffolds play a crucial role in tendon healing by providing structural support, promoting cell infiltration, and guiding tissue regeneration. Polycaprolactone (PCL) has been used as a polymer in biological scaffolds for several tissue engineering studies. This study aimed to investigate the effects of curcumin-loaded PCL scaffold on Achilles tendon using a tenotomy model in rats.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Background: External volume expansion (EVE) devices has been demonstrated to enhance the survival of fat grafts. Decellularized adipose tissue (DAT) serves as a promising scaffold for adipose regeneration; however, the effectiveness of adipose regeneration in DAT remains limited, and the underlying mechanisms of its regeneration require further investigation.
Objective: This study explores the potential of EVE technology to enhance DAT-mediated adipogenesis by facilitating cellular recruitment and establishing a microenvironment conducive to adipose tissue regeneration.
ACS Appl Bio Mater
January 2025
Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France.
With a prevalence of over 90% in people over 50, intervertebral disc degeneration (IVDD) is a major health concern. This weakening of the intervertebral discs can lead to herniation, where the nucleus pulpus (NP) leaks through the surrounding Annulus Fibrosus (AF). Considering the limited self-healing capacity of AF tissue, an implant is needed to restore its architecture and function.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Honghuagang District, Guizhou, China.
With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!