The effects of heparin on the physicochemical properties of reconstituted collagen.

Coll Relat Res

Connective Tissue Research Laboratories, Collagen Corporation, Palo Alto, CA 94303.

Published: January 1988

Pepsin-solubilized bovine dermal collagen was reconstituted in 0.02 M sodium phosphate (pH 7.2), concentrated to 30-40 mg/ml, and adjusted to physiological ionic strength by addition of sodium chloride. These preparations, at 4-15 degrees C, are fibrillar suspensions composed of fibrils of varying diameters and nonassociated molecules. Addition of heparin to these suspensions promoted a dose-dependent increase in average fibril diameter as measured by turbidimetry and electron microscopic analyses. These effects were relatively specific for heparin and heparin-like glycosaminoglycans. Chondroitin sulfate and hyaluronic acid had little or no effect on fibrillar diameters under these conditions, whereas dermatan sulfate had an intermediate effect on fibrillar reorganization. Differential scanning calorimetry revealed that addition of optimal concentrations of heparin generated fibrils of higher stability and that this effect was associated with the disappearance of structures of lower stability, including nonassociated molecules and thin fibrils. Light microscopic analyses of the fibrillar collagen/heparin matrix showed it to be a more open network of distinct collagen fibers than was observed with the fibrillar collagen preparation alone. Binding experiments indicated that heparin bound to fibrillar collagen in a saturable fashion with a Kd of approximately 4 X 10(-7) M. Creep experiments provided evidence that the addition of heparin to fibrillar collagen suspensions greatly reduces the gelation phenomenon that is normally observed when such suspensions are warmed to 37 degrees C. These differences in fibrillar architecture may be in part responsible for differences noted in the biological response to fibrillar collagen and fibrillar collagen/heparin implants in vivo (McPherson et al., 1988).

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0174-173x(88)80036-0DOI Listing

Publication Analysis

Top Keywords

fibrillar collagen
16
fibrillar
10
nonassociated molecules
8
addition heparin
8
microscopic analyses
8
fibrillar collagen/heparin
8
collagen
7
heparin
5
effects heparin
4
heparin physicochemical
4

Similar Publications

ACE2 Inhibits Dermal Regeneration Through Ang II in Tissue Expansion.

J Cosmet Dermatol

January 2025

Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.

Background: Tissue expansion is a widely employed technique in reconstructive surgery aimed at addressing considerable skin defects. Nevertheless, matters like inadequate expansion capability and the potential for skin breakage due to the fragility of the expanded tissue present notable hurdles in enhancing skin regeneration during this process. Angiotensin-converting enzyme 2 (ACE2) is recognized for its essential role in facilitating tissue renewal and regeneration.

View Article and Find Full Text PDF

Reproductive success requires accurately timed remodeling of the cervix to orchestrate the maintenance of pregnancy, the process of labor, and birth. Prior work in mice established that a combination of continuous turnover of fibrillar collagen and reduced formation of collagen cross-links allows for the gradual increase in tissue compliance and delivery of the fetus during labor. However, the mechanism for continuous collagen degradation to ensure turnover during cervical remodeling is still unknown.

View Article and Find Full Text PDF

Transforming growth factor-beta 1 () and type I collagen play crucial roles in the pathogenesis of diabetic bladder disease (DBD). Moderate-intensity aerobic exercise increases antioxidant activity to help manage DBD. The aim of this study was to evaluate the effect of moderate-intensity aerobic exercise on the expression of and type I collagen in the detrusor and lamina propria of the bladder in a type 2 diabetes mellitus (T2DM) rat model.

View Article and Find Full Text PDF

COL3A1 Gene Polymorphism and Its Impact on Female Pelvic Organ Prolapse.

Med Sci Monit

January 2025

Division of Urogynecology and Reconstructive Surgery, Department of Obstetrics and Gynecology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia.

Pelvic organ prolapse (POP) is a women's health problem in both developed and developing countries. Various studies have found that the occurrence of POP is related to the supporting structures of the pelvic floor, including type III collagen levels. Most studies reported no correlation between collagen 3 alpha 1 (COL3A1) rs1800255 gene polymorphism and the occurrence of POP.

View Article and Find Full Text PDF

Combination of rapamycin and adipose-derived mesenchymal stromal cells enhances therapeutic potential for osteoarthritis.

Stem Cell Res Ther

January 2025

IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.

Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!