Development of augmented-reality applications in otolaryngology-head and neck surgery.

Laryngoscope

Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, U.S.A.

Published: October 2019

Objectives/hypothesis: Augmented reality (AR) allows for the addition of transparent virtual images and video to one's view of a physical environment. Our objective was to develop a head-worn, AR system for accurate, intraoperative localization of pathology and normal anatomic landmarks during open head and neck surgery.

Study Design: Face validity and case study.

Methods: A protocol was developed for the creation of three-dimensional (3D) virtual models based on computed tomography scans. Using the HoloLens AR platform, a novel system of registration and tracking was developed. Accuracy was determined in relation to actual physical landmarks. A face validity study was then performed in which otolaryngologists were asked to evaluate the technology and perform a simulated surgical task using AR image guidance. A case study highlighting the potential usefulness of the technology is also presented.

Results: An AR system was developed for intraoperative 3D visualization and localization. The average error in measurement of accuracy was 2.47 ± 0.46 millimeters (1.99, 3.30). The face validity study supports the potential of this system to improve safety and efficiency in open head and neck surgical procedures.

Conclusions: An AR system for accurate localization of pathology and normal anatomic landmarks of the head and neck is feasible with current technology. A face validity study reveals the potential value of the system in intraoperative image guidance. This application of AR, among others in the field of otolaryngology-head and neck surgery, promises to improve surgical efficiency and patient safety in the operating room.

Level Of Evidence: 2b Laryngoscope, 129:S1-S11, 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lary.28098DOI Listing

Publication Analysis

Top Keywords

face validity
16
head neck
12
validity study
12
otolaryngology-head neck
8
neck surgery
8
system accurate
8
localization pathology
8
pathology normal
8
normal anatomic
8
anatomic landmarks
8

Similar Publications

Following the (revised) latent state-trait theory, the present study investigates the within-subject reliability, occasion specificity, common consistency, and construct validity of cognitive control measures in an intensive longitudinal design. These indices were calculated applying dynamic structural equation modeling while accounting for autoregressive effects and trait change. In two studies, participants completed two cognitive control tasks (Stroop and go/no-go) and answered questions about goal pursuit, self-control, executive functions, and situational aspects, multiple times per day.

View Article and Find Full Text PDF

Introduction: Non-motor symptoms (NMS) in Parkinson's disease (PD) can fluctuate daily, impacting patient quality of life. The Non-Motor Fluctuation Assessment (NoMoFA) Questionnaire, a recently validated tool, quantifies NMS fluctuations during ON- and OFF-medication states. Our study aimed to validate the Italian version of NoMoFA, comparing its results to the original validation and further exploring its clinimetric properties.

View Article and Find Full Text PDF

Multi-insertion/deletion polymorphisms (Multi-InDels), as the novel genetic markers, show great potential in forensic research. Whereas, forensic researchers mainly focus on the multi-InDels on the autosomes, which can provide relatively limited information in some complex paternity cases. In this study, a novel X chromosomal multi-InDel multiplex amplification system was designed, containing 22 multi-InDels and one STR locus on the X chromosome.

View Article and Find Full Text PDF

Exhaled breath metabolites reveal postmenopausal gut-bone cross-talk and non-invasive markers for osteoporosis.

Commun Med (Lond)

December 2024

Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Rostock, Germany.

Background: Menopause driven decline in estrogen exposes women to risk of osteoporosis. Detection of early onset and silent progression are keys to prevent fractures and associated burdens.

Methods: In a discovery cohort of 120 postmenopausal women, we combined repeated quantitative pulse-echo ultrasonography of bone, assessment of grip strength and serum bone markers with mass-spectrometric analysis of exhaled metabolites to find breath volatile markers and quantitative cutoff levels for osteoporosis.

View Article and Find Full Text PDF

Generation of highly stable electron beam via the control of hydrodynamic instability.

Sci Rep

December 2024

SANKEN (Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.

By employing the stabilizer in the supersonic gas nozzle to produce the plasma density profile with a sharp downramp, we have experimentally demonstrated highly stable electron beam acceleration based on the shock injection mechanism in laser wakefield acceleration with the use of a compact Ti:sapphire laser. A quasi-monoenergetic electron beam with a peak energy of 315 MeV ± 12.5 MeV per shot is generated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!