Importance: Radioactive iodine (RAI) has been used extensively to treat hyperthyroidism since the 1940s. Although widely considered a safe and effective therapy, RAI has been associated with elevated risks of total and site-specific cancer death among patients with hyperthyroidism.
Objective: To determine whether greater organ- or tissue-absorbed doses from RAI treatment are associated with overall and site-specific cancer mortality in patients with hyperthyroidism.
Design, Setting, And Participants: This cohort study is a 24-year extension of the multicenter Cooperative Thyrotoxicosis Therapy Follow-up Study, which has followed up US and UK patients diagnosed and treated for hyperthyroidism for nearly 7 decades, beginning in 1946. Patients were traced using records from the National Death Index, Social Security Administration, and other resources. After exclusions, 18 805 patients who were treated with RAI and had no history of cancer at the time of the first treatment were eligible for the current analysis. Excess relative risks (ERRs) per 100-mGy dose to the organ or tissue were calculated using multivariable-adjusted linear dose-response models and were converted to relative risks (RR = 1 + ERR). The current analyses were conducted from April 28, 2017, to January 30, 2019.
Exposures: Mean total administered activity of sodium iodide I 131 was 375 MBq for patients with Graves disease and 653 MBq for patients with toxic nodular goiter. Mean organ or tissue dose estimates ranged from 20 to 99 mGy (colon or rectum, ovary, uterus, prostate, bladder, and brain/central nervous system), to 100 to 400 mGy (pancreas, kidney, liver, stomach, female breast, lung, oral mucosa, and marrow), to 1.6 Gy (esophagus), and to 130 Gy (thyroid gland).
Main Outcomes And Measures: Site-specific and all solid-cancer mortality.
Results: A total of 18 805 patients were included in the study cohort, and the mean (SD) entry age was 49 (14) years. Most patients were women (14 671 [78.0%]), and most had a Graves disease diagnosis (17 615 [93.7%]). Statistically significant positive associations were observed for all solid cancer mortality (n = 1984; RR at 100-mGy dose to the stomach = 1.06; 95% CI, 1.02-1.10; P = .002), including female breast cancer (n = 291; RR at 100-mGy dose to the breast = 1.12; 95% CI, 1.003-1.32; P = .04) and all other solid cancers combined (n = 1693; RR at 100-mGy dose to the stomach = 1.05; 95% CI, 1.01-1.10; P = .01). The 100-mGy dose to the stomach and breast corresponded to a mean (SD) administered activity of 243 (35) MBq and 266 (58) MBq in patients with Graves disease. For every 1000 patients with hyperthyroidism receiving typical doses to the stomach (150 to 250 mGy), an estimated lifetime excess of 19 (95% CI, 3-40) to 32 (95% CI, 5-66) solid cancer deaths could occur.
Conclusions And Relevance: In RAI-treated patients with hyperthyroidism, greater organ-absorbed doses appeared to be modestly positively associated with risk of death from solid cancer, including breast cancer. Additional studies are needed of the risks and advantages of all major treatment options available to patients with hyperthyroidism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604114 | PMC |
http://dx.doi.org/10.1001/jamainternmed.2019.0981 | DOI Listing |
Phys Med Biol
January 2025
Department of Medical Physics, Jeroen Bosch Ziekenhuis, Henri Dunantstraat 1, 's-Hertogenbosch, 5223GZ, NETHERLANDS.
The treatment of breast cancer during pregnancy requires careful consideration of consequences for both maternal and fetal health. In non-pregnant patients, the use of radioactive iodine-125 (125I)-seeds is standard practice for localising non-palpable breast tumors before breast-conserving surgery. However, the use of 125I-seeds in pregnant patients has been avoided due to concerns about fetal radiation exposure.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
Purpose: Due to the extensive use of radiation in various fields, such as food safety, sterilizing surgical materials, and medical diagnostics, it is essential to minimize radiation exposure for both patients and healthcare professionals, even at low doses. To meet this requirement, a composite film has been developed using polyvinyl alcohol (PVA) polymer and nitro blue tetrazolium (NBT) dye to measure low radiation doses effectively.
Methods: Various concentrations of NBT dye (ranging from 0.
Dose Response
December 2024
Canadian Nuclear Laboratories - Retired, Chalk River, ON, Canada.
The Hiroshima/Nagasaki (H/N) studies by the Radiation Effect Research Foundation have not shown increased leukaemia for acute doses below 200 milli-gray (mGy). By contrast the INWORKS study of leukaemia in workers stated: "This study provides strong evidence of positive associations between protracted low-dose radiation exposure and leukemia". The INWORKS study also claimed increased leukaemia, not including Chronic Lymphocytic Leukaemia, at cumulative occupational doses of less than 100 mGy.
View Article and Find Full Text PDFRadiat Environ Biophys
December 2024
Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA.
Increased thyroid cancer incidence has been one of the principal adverse health effects of the Chornobyl (Chernobyl) nuclear power plant accident. Accurate dose estimation is critical for assessing the radiation dose-response relationship. Current dosimetry estimates for individuals from the Chornobyl Tissue Bank (CTB) are based only on the limited information on their places of residence at the time of the accident and/or at the time of surgery for thyroid cancer.
View Article and Find Full Text PDFJ Radiol Prot
October 2024
Department of Medical Physics, Ninewells Hospital and Medical School, Dundee, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The term 'low dose' is applied to different levels of dose depending on the circumstances of exposure, with the potential for confusion unless the reasoning is clear. The United Nations Scientific Committee on the Effects of Ionising Radiation has defined low absorbed doses of ionising radiation as below about 100 mGy, and low dose rates as below 0.1 mGy min-1 (6 mGy h-1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!