Sporulation of Bacillus subtilis is a primitive example of coupling between morphological changes and timing of gene expression during development. A major early control of transcriptional activity is dependent on a new sigma factor, sigma E, which is encoded by the sigE gene and synthesized as an inactive precursor, pro-sigma E. We show that mutations in the spoIIGA gene block the processing of pro-sigma E. Moreover, synthesis of both spoIIGA and sigE products in vegetative cells leads to expression of a sigma E-controlled promoter during growth, suggesting that SpoIIGA has pro-sigma E processing activity. The SpoIIGA polypeptide, which contains five potential transmembrane domains, is synthesized during sporulation 1 hr before processing activity can be detected. We propose that SpoIIGA processing activity is triggered by the presence of the sporulation septum, which is itself dependent on the spoIIAA and spoIIE products. These proteins are normally needed for pro-sigma E processing during sporulation but can be bypassed in vegetative cells. According to this model, a morphological structure would directly control the synthesis of a developmental sigma factor and would modify gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0092-8674(88)90407-2 | DOI Listing |
Crit Rev Food Sci Nutr
January 2025
Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.
Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, 's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence activity with its critical role in bacterial stress responses. Our findings reveal that is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.
View Article and Find Full Text PDFBiochemistry
January 2025
Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India.
Bacterial flagella are complex molecular motors that are essential for locomotion and host colonization. They consist of 30 different proteins expressed in varying stoichiometries. Their assembly and function are governed by a hierarchical transcriptional regulatory network with multiple checkpoints primarily regulated by sigma factors.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
In , the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σ). Understanding the regulation of RpoS is crucial for elucidating how is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the mRNA stability.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China. Electronic address:
Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!