Stretchable electrode is an essential part of soft electronic devices. Practical stretchable electrodes must meet the following requirements: metallic conductivity and no resistance change in various situations such as repeated large deformation, toxic environment, and large temperature change. This study suggests a simple electrode design that meets all of these requirements simultaneously. The electrode consists of a liquid metal (LM) mesh pattern that is sandwiched between a thermoplastic block copolymer (BCP) film and a BCP/Ag flake composite film with a microfibril network structure on its surface. The electrode has a high conductivity (1.2 × 10 S/cm) and is stretchable up to 600% uniaxial strain (ε). Its resistance remains unchanged during repeated stretching cycles at ε = 300% (Δ < 0.04 Ω) as well as under simultaneous situation of large deformation (ε = 400%) and large temperature change (20-70 °C). The electrode is anticorrosive in an acidic solution owing to the hydrophobic BCP layer that protects the LM from being etched. This study shows the connection of two separate electrodes and complete healing of scratched electrodes by finger pressing. In addition, it demonstrates the fabrication of superstretchable electroluminescence display as an example of potential uses of the electrode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b08648 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.
With the rapid advancement of soft electronics, particularly the rise of fiber electronics and smart textiles, there is an urgent need to develop high-performance fiber materials with both excellent electrical and mechanical properties. However, existing fiber materials including metal fibers, carbon-based fibers, intrinsically conductive polymer fibers, and composite fibers struggle to simultaneously meet the requirements. Here, we introduce a metalgel fiber with a unique structure.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Physics and New Energy Device School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
Smart grippers serving as soft robotics have garnered extensive attentions owing to their great potentials in medical, biomedical, and industrial fields. Though a diversity of grippers that account for manipulating the small objects (e.g.
View Article and Find Full Text PDFChemSusChem
January 2025
Spanish Scientific Research Council: Consejo Superior de Investigaciones Cientificas, Metalurgia Primaria y Reciclado de Materiales, SPAIN.
This work aims to recover rare earths from wind turbines NdFeB magnets through pyrometallurgical and hydrometallurgical techniques. First, a NdFeB hydride powder is obtained by decrepitation with hydrogen. Subsequently, this powder was subjected to a chlorination roasting process and successive leaching with water to bring the metals into solution.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan.
Doxorubicin (DOX) is one of the most widely used chemotherapy drugs in the treatment of both solid and liquid tumors in patients of all age groups. However, it is likely to produce several side effects that include doxorubicin cardiomyopathy. Nanoparticles (NPs) can offer targeted delivery and release of the drug, potentially increasing treatment efficiency and alleviating side effects.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore.
The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as FeO, AlO, CaSO, NbO, and a carbide, SiC. These cross-linking agents enhance the mechanical stability of the membranes and modulate their mass transport properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!