Confocal Raman microscopy has a number of advantages in investigating the human stratum corneum (SC) and . The penetration profiles of xenobiotics in the SC, as well as depth profiles of the physiological parameters of the SC, such as the concentration of water depending on the strength of hydrogen bonds, total water concentration, the hydrogen bonding state of water molecules, concentration of intercellular lipids, the lamellar and lateral packing order of intercellular lipids, the concentration of natural moisturizing factor molecules, carotenoids, and the secondary and tertiary structure properties of keratin are well investigated. To consider the depth-dependent Raman signal attenuation, in most cases a normalization procedure is needed, which uses the main SC's protein keratin-related Raman peaks, based on the assumption that keratin is homogeneously distributed in the SC. We found that this assumption is not accurate for the bottom part of the SC, where the water concentration is considerably increased, thus, reducing the presence of keratin. Our results demonstrate that the bottom part of the SC depth profile should be multiplied by 0.94 in average in order to match this non-homogeneity, which result in a decrease of the uncorrected values in these depths. The correctly normalized depth profiles of the concentration of lipids, water, natural moisturizing factor and carotenoids are presented in this work. The obtained results should be taken into consideration in future skin research using confocal Raman microscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6583359 | PMC |
http://dx.doi.org/10.1364/BOE.10.003092 | DOI Listing |
J Rhinol
November 2024
Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India.
The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I/I). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada Kobe 657-8501, Japan.
Manufacturing using adhesion technology has attracted much attention. Examples of adhesion include the lay-up of carbon fiber reinforced thermoplastic prepregs and the lamination of food packaging. In single-component adhesion systems, the analysis of the boundary region poses challenges because of the absence of chemical and physical discrimination at the adhesion interphase.
View Article and Find Full Text PDFMicromodification in bulk undoped polymethylmethacrylate (PMMA) by single focused (numerical aperture (NA) = 0.25), 1030-nm 250-fs laser pump pulses was explored by pump self-transmittance; optical, 3D-scanning confocal photoluminescence (PL); Raman micro-spectroscopy; and optical polarimetric and interferometric microscopy. Starting from the threshold pulse energy = 0.
View Article and Find Full Text PDFInt J Surg
December 2024
Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
Background And Objective: Breast-conserving surgery (BCS) plays a crucial role in breast cancer treatment, with a primary focus on ensuring cancer-free surgical margins, particularly for patients undergoing neoadjuvant treatment. After neoadjuvant treatment, tumor regression can complicate the differentiation between breast cancer and adjacent tissues. Raman spectroscopy, as a rapid and non-invasive optical technique, offers the advantage of providing detailed biochemical information and molecular signatures of internal molecular components in tissue samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!