Role of IDO and TDO in Cancers and Related Diseases and the Therapeutic Implications.

J Cancer

Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Published: June 2019

Kynurenine (Kyn) pathway is a significant metabolic pathway of tryptophan (Trp). The metabolites of the Kyn pathway are closely correlated with numerous diseases. Two main enzymes, indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO or TDO2), regulate the first and rate-limiting step of the Kyn pathway. These enzymes are directly or indirectly involved in various diseases, including inflammatory diseases, cancer, diabetes, and mental disorders. Presently, an increasing number of potential mechanisms have been revealed. In the present review, we depict the structure of IDO and TDO and explicate their functions in various diseases to facilitate a better understanding of them and to indicate new therapeutic plans to target them. Moreover, we summarize the inhibitors of IDO/TDO that are currently under development and their efficacy in the treatment of cancer and other diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584917PMC
http://dx.doi.org/10.7150/jca.31727DOI Listing

Publication Analysis

Top Keywords

kyn pathway
12
ido tdo
8
diseases
6
role ido
4
tdo cancers
4
cancers diseases
4
diseases therapeutic
4
therapeutic implications
4
implications kynurenine
4
kynurenine kyn
4

Similar Publications

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Tryptophan Kynurenine Pathway-Based Imaging Agents for Brain Disorders and Oncology-From Bench to Bedside.

Biomolecules

January 2025

Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA.

Tryptophan (Trp)-based radiotracers have excellent potential for imaging many different types of brain pathology because of their involvement with both the serotonergic and kynurenine (KYN) pathways. However, radiotracers specific to the kynurenine metabolism pathway are limited. In addition, historically Trp-based radiopharmaceuticals were synthesized with the short-lived isotope carbon-11.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates cell immune responses in a cell type-specific and ligand-dependent manner. In the central nervous system, astrocytic AhR plays important roles in regulating neuroinflammation by mediating responses to endogenous ligands generated from the inflammation-induced indoleamine 2,3-dioxygenase 1 (IDO1)/kynurenine (KYN) pathway. We previously demonstrated that reduction of AhR expression decreases lipopolysaccharide (LPS)-induced pro-inflammatory responses in microglia.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy plays a critical role in the treatment of B-cell hematologic malignancies. The combination of PD-1 inhibitors and CAR-T has shown encouraging results in treating patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). However, there are still cases where treatment is ineffective.

View Article and Find Full Text PDF

Peripheral tryptophan-kynurenine pathway dysfunction in first-episode schizophrenia.

Sci Rep

January 2025

Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.

The tryptophan (TRP)-kynurenine (KYN) pathway is involved in the pathogenesis of schizophrenia. This study aimed to investigate the levels of TRP-KYN metabolites in serum and urine of patients with first-episode schizophrenia (FES) and their association with clinical manifestations. This study included 38 drug-naive patients with FES and 43 healthy controls (HCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!