Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been shown that various glutathione transferases can synthesize leukotriene C4, or its methyl ester, from glutathione and leukotriene A4. We questioned whether the same enzymes could be used to resolve racemic leukotriene A4 methyl ester (more easily prepared than the optically active enantiomer) and to produce leukotriene C4 methyl ester selectively. We present in this paper a study of the enantioselectivity of some rat liver glutathione transferase isozymes and of the glutathione transferase of human placenta for the leukotriene A4 methyl ester isomers. The rat liver 3-4 glutathione transferase exhibited the highest conversion rate but preferentially converted the (5R, 6R) leukotriene A4 methyl ester. The placental enzyme was fairly selective for the natural (5S, 6S) enantiomer but the rate of conversion was low.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!