A system was developed for determining dipicolinic acid in "natto" using liquid chromatography with fluorometric detection. The compound was separated by reversed-phase chromatography using a mobile phase of 0.1 mol/L disodium hydrogen phosphate, 0.05 mol/L citric acid buffer (adjusted to pH 3.0) containing 3.0 mmol/L zinc acetate and 35 mmol/L perchloric acid. The compound in the column effluent was irradiated with ultraviolet light to produce fluorescence. This fluorescence was monitored at an excitation at 336 nm and an emission at 448 nm. The calibration curve for dipicolinic acid was observed to be linear in a range of 0.2 to 112 ng. The dipicolinic acid content of natto was 7.24 ± 0.54 mg/100 g (wet weight, mean ± standard deviation [SD], n = 6).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585242PMC
http://dx.doi.org/10.1177/1178646919852120DOI Listing

Publication Analysis

Top Keywords

dipicolinic acid
16
acid "natto"
8
liquid chromatography
8
zinc acetate
8
acid
6
determination dipicolinic
4
"natto" high-performance
4
high-performance liquid
4
chromatography coupled
4
coupled postcolumn
4

Similar Publications

A Stable Zn(II) Metal-Organic Framework as Turn-On and Blue-Shift Fluorescence Sensor for Amino Acids and Dipicolinic Acid in Living Cells or Using Aerosol Jet Printing.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.

Amino acids and dipicolinic acid (DPA) are important biomarkers for identifying human health. Establishing rapid, accurate, sensitive, and simple assays is essential for disease prevention and early diagnosis. In this work, a novel Zn(II) metal-organic framework (MOF) with the formula {[Zn(μ-OH)(BTDI)(dpp)]·dpp·4HO·2DMF} (, where denotes Jiangxi University of Science and Technology, HBTDI = 5,5'-(benzo[][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid; dpp = 1,3-di(4-pyridyl)propane) was successfully synthesized via a mixed-ligands strategy.

View Article and Find Full Text PDF

The presence of Bacillus cereus in spices and herbs has posed a detrimental effect on food safety. The absence of thorough testing, comprehensive reporting, and vigilant surveillance of the illness has resulted in a significant underestimation of the true prevalence of foodborne illness caused by B. cereus.

View Article and Find Full Text PDF

Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu ions, where Cu quenches the fluorescence of OFL static quenching.

View Article and Find Full Text PDF

Role of water activity on sporulation traits and resistance to 915 MHz microwave in the emetic type of Bacillus cereus on rice.

Food Res Int

November 2024

Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green BioScience & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 232-916, Republic of Korea. Electronic address:

The objective of this study is to investigate the influence of water activity on the sporulation of emetic strains of Bacillus cereus and the subsequent susceptibility of sporulated B. cereus to 915 MHz microwave treatment. Water activity levels were manipulated in the sporulation medium by adjusting glycerol concentrations to 0 %, 3 %, 7.

View Article and Find Full Text PDF

Characterization of the Bacillus cereus spore killed by plasma-activated water (PAW).

Food Res Int

November 2024

School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China. Electronic address:

Article Synopsis
  • * PAW disrupts the structure of the spores by damaging the outer and inner membranes, causing changes like wrinkling and altered shape, while also releasing critical components like pyridine-2,6-dicarboxylic acid (DPA).
  • * The inactivation effects of PAW include reduced elasticity, compromised spore coat integrity, denatured proteins, and damaged DNA, which collectively point to the mechanisms through which PAW leads to spore death.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!