Sodium hydroxide treatment effectively inhibits PrP replication in farm soil.

Prion

a Foreign Animal Disease Division, Department of Animal and Plant Health Research , Animal and Plant Quarantine Agency , Gimcheon-si , Gyeongsangbukdo , Republic of Korea.

Published: January 2019

AI Article Synopsis

Article Abstract

Chronic wasting disease (CWD) agents are shed into biological samples, facilitating their horizontal transmission between cervid species. Once prions enter the environment, binding of PrP by soil particles may maintain them near the soil surface, posing a challenge for decontamination. A 2 N sodium hydroxide (NaOH) or 2% sodium hypochlorite (NaClO) solution is traditionally recommended for prion decontamination of equipment and surfaces. Using protein misfolding cyclic amplification with beads and a bioassay with TgElk mice, we compared the effects of these disinfectants in CWD-contaminated soil for 1 or 16 h to those of controls of known infectious titres. Our results suggest that 2 N NaOH in a 1/5 farm soil volume provides a large decrease (>10-fold) in prion infectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629177PMC
http://dx.doi.org/10.1080/19336896.2019.1617623DOI Listing

Publication Analysis

Top Keywords

sodium hydroxide
8
farm soil
8
soil
5
hydroxide treatment
4
treatment effectively
4
effectively inhibits
4
inhibits prp
4
prp replication
4
replication farm
4
soil chronic
4

Similar Publications

Optimization Study of a High-Efficiency Preservative for Ammonia-Free Concentrated Natural Rubber Latex.

Polymers (Basel)

January 2025

Hainan Natural Rubber Technology Innovation Center, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Ammonia is commonly used as a preservative in the production of concentrated natural rubber latex (CNRL) and latex products; however, it poses a serious risk to human health and the environment. In this study, we investigated a thioacetamide derivative (TD) as a preservative of ammonia-free CNRL and the optimization of a stabilization system comprising potassium hydroxide (KOH), lauric acid (LA), and sodium dodecyl sulfate (SDS) to enhance its preservation effect. The results revealed that an optimal amount of TD (0.

View Article and Find Full Text PDF

This article systematically investigated the improvement effect of polypropylene fiber (PPF) on the mechanical and freeze-thaw properties of alkali-activated fly ash slag concrete (AAFSC) with high fly ash content and cured at room temperature. Fly ash and slag were used as precursors, with fly ash accounting for 80% of the total mass. A mixed solution of sodium hydroxide and sodium silicate was used as alkali activator, and short-cut PPF was added to improve the performance of AAFSC.

View Article and Find Full Text PDF

The Effectiveness of Polyhydroxyalkanoate (PHA) Extraction Methods in Gram-Negative U.

Polymers (Basel)

January 2025

Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain.

Bioplastics are emerging as a promising solution to reduce pollution caused by petroleum-based plastics. Among them, polyhydroxyalkanoates (PHAs) stand out as viable biotechnological alternatives, though their commercialization is limited by expensive downstream processes. Traditional PHA extraction methods often involve toxic solvents and high energy consumption, underscoring the need for more sustainable approaches.

View Article and Find Full Text PDF

Removal of Malachite Green Dye from Aqueous Solution by a Novel Activated Carbon Prepared from Baobab Seeds Using Chemical Activation Method.

Molecules

January 2025

Department of Environment and Agricultural Natural Resources, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.

Two activated carbons were synthesized from baobab seeds (BSs) using two activators, sulfuric acid (BS-AAC) and sodium hydroxide (BS-BAC), for dye removal from aqueous solutions. Malachite green (MG) was used as a model dye. SEM, FTIR, TGA, and surface area were used to characterize the feedstock and synthesis activated carbons.

View Article and Find Full Text PDF

The shortage of tissues and damaged organs led to the development of tissue engineering. Biological scaffolds, created from the extracellular matrix (ECM) of organs and tissues, have emerged as a promising solution for transplants. The ECM of decellularized auricular cartilage is a potential tool for producing ideal scaffolds for the recellularization and implantation of new tissue in damaged areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!