Tunable-band-gap colloidal QDs are a potential building block to harvest the wide-energy solar spectrum. The solution-phase surface passivation with lead halide-based halometallate ligands has remarkably simplified the processing of quantum dots (QDs) and enabled the proficient use of materials for the development of solar cells. It is, however, shown that the hallometalate ligand passivated QD ink allows the formation of thick crystalline shell layer, which limits the carrier transport of the QD solids. Organic thiols have long been used to develop QD solar cells using the solid-state ligand exchange approach. However, their use is limited in solution-phase passivation due to poor dispersity of thiol-treated QDs in common solvents. In this report, a joint passivation strategy using thiol and halometallate ligand is developed to prepare the QD ink. The mutually passivated QDs show a 50% reduction in shell thickness, reduced trap density, and improved monodispersity in their solid films. These improvements lead to a 4 times increase in carrier mobility and doubling of the diffusion length, which enable the carrier extraction from a much thicker absorbing layer. The photovoltaic devices show a high efficiency of 10.3% and reduced hysteresis effect. The improvement in surface passivation leads to reduced oxygen doping and improved ambient stability of the solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b07605 | DOI Listing |
J Phys Chem Lett
January 2025
College of Physics Science and Technology, Hebei University, Baoding 071002, China.
Developing the Cd-free electron transport layer (ETL) is a crucial subject in the field of antimony selenide (SbSe) solar cells. At present, the power conversion efficiency (PCE) of the Cd-free SbSe solar cell is still substantially lower than that of CdS-based devices. It is significant to reveal the electron transfer features in SbSe/CdS heterojunction and SbSe/Cd-free ETL heterojunction for development of a Cd-free SbSe solar cell with high PCE.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Perovskite solar cells (PSCs) have emerged as low-cost photovoltaic representatives. Constructing three-dimensional (3D)/two-dimensional (2D) perovskite heterostructures has been shown to effectively enhance the efficiency and stability of PSCs. However, further enhancement of device performance is still largely limited by inferior conductivity of the 2D perovskite capping layer and its mismatched energy level with the 3D perovskite layer.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
As the simplest free-living animal, (Placozoa) is emerging as a powerful paradigm to decipher molecular and cellular bases of behavior, enabling integrative studies at all levels of biological organization in the context of metazoan evolution and parallel origins of neural organization. However, the progress in this direction also depends on the ability to maintain a long-term culture of placozoans. Here, we report the dynamic of cultures over 11 years of observations from a starting clonal line, including 7 years of culturing under antibiotic (ampicillin) treatment.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
Bioelectronic devices with medical functions have attracted widespread attention in recent years. Power supplies are crucial components in these devices, which ensure their stable operation. Biomedical devices that utilize external power supplies and extended electrical wires limit patient mobility and increase the risk of discomfort and infection.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Guangzhou University, Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006 P, 510006, Guangzhou, CHINA.
The optimization of morphology in all-polymer solar cells (all-PSCs) often relies on the use of solvent additives. However, their tendency to remain trapped in the device due to high boiling points leads to performance degradation over time. In this study, we introduce a novel approach involving the design and synthesis of one dual-asymmetric solid additive featuring mono-brominated-asymmetric dithienothiophene (SL-1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!