Maximum Entropy (MaxEnt) model has been widely used in recent years. However, MaxEnt is highly inclined to produce misleading results if it is not well optimized. We summarized the researches about the model optimization for sampling bias correction, model complexity tuning, presence-absence threshold selection, and model evaluation. Spatial filtering performs best for sampling bias correction, while restricted background method shows the lowest efficacy. Model complexi-ty is mainly determined by three factors: The number of environmental variables, model feature types, and regularization multiplier. Variables filtering is needed when sample size is less than the number of environment variables. The criterion of variables selection should focus on their ecological significance rather than the co-linearity between them. The choice of feature types has relatively limi-ted effects on predictive performance of the model, therefore it is advised to choose simpler models. To control overfitting, it is necessary to conduct species-specific tuning on regularization multiplier, which was usually bigger than the default setting. There are three criteria called objectivity, equality and discriminability for selecting threshold to convert continuous predication (e.g. probability of presence) into binary results. Maximizing the sum of sensitivity and specificity is a sound method for threshold selection. Model evaluation methods could be classified into two main types: Threshold-independent and threshold-dependent. Among the threshold-independent evaluations, information criteria may offer significant advantages over AUC and COR. True Skill Statistics is a better index for threshold-dependent evaluations, because it takes both omission and commission errors into account, and is robust to pseudo-absence assumption and species prevalence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201906.029 | DOI Listing |
J Surg Educ
January 2025
Washington University of St. Louis, Department of Orthopaedic Surgery, St. Louis, Missouri.
Objective: Orthopedic residents are tasked with rapidly acquiring clinical and surgical skills, especially during their PGY-1 year. However, resource constraints and other factors frequently cause skills training to fall short of established guidelines. We aimed to design and evaluate a cross-institutional, month-long curriculum aimed at pooling resources to optimize training.
View Article and Find Full Text PDFAm J Emerg Med
January 2025
Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.
Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.
Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.
Biomed Phys Eng Express
January 2025
School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Department of Ophthalmology, Hospital Universitario de Canarias, Carretera Ofra S/N, La Laguna, Santa Cruz de Tenerife, 38320, SPAIN.
This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Jinan, Shandong, 250355, CHINA.
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!