To understand the influence of roots of understory plant entering litter layer on litter decomposition in forest ecosystems, we examined the effects of different treatments of Lolium multiflorum root biomass on microorganisms and enzyme activities during leaf litter decomposition of Symplocos setchuensis, a dominant species in a mid-subtropical evergreen broad-leaved forest, through a litter bag simulation experiment. Results showed that diversity index of bacterial and fungal communities of leaf litter surface under three treatments, i.e. no root (N), less roots (L), more roots (M), in a 240-day decomposition process showed the following pattern: M > L > N. The effects of these different root biomass treatments on the composition and quantity of fungal community were more significant than those on bacterial community. The biomass of living roots growing in the litter bag gradually decreased at the end of the growing season of L. multiflorum. The impacts of root growth on the composition of the fungal community gradually decreased during decomposition. At the same decomposition stage, the activities of acid phosphatase, β-glucosidase, polyphenol oxidase, and peroxidase on the litter surface were higher in the treatments with roots than that without roots. These results indicated that root growth could change the composition and quantity of microbial communities and increase the extracellular enzyme activities of microbes, and thus stimulating litter decomposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201906.022 | DOI Listing |
Am J Bot
January 2025
Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.
Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).
Background: Immunization clinics present an opportunity for passive screening for malnutrition among young children through plotting of growth charts. Passive screening for malnutrition can enable timely interventions and improve morbidity and mortality of under-five children. Therefore, we aimed to increase the plotting of growth charts (weight-for-age) to 90%, among under-five children attending immunization clinics in an Urban Health Centre (UHC) in south Delhi over three months.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Flowering is a critical step in the plant life cycle. Angelica sinensis (Oliv.) Diels is a medicinal crop whose root is a well-known herbal medicine used in Asia.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
Plant root and soil-associated microbiomes are influenced by niches, including bulk and rhizosphere soil. In this work, we collected bulk and rhizosphere soil samples at four potato developmental stages (leaf growth, flowering, tuber elongation and harvest) to identify whether rhizosphere microbiota are structured in a growth stage-dependent manner. The bacterial and fungal microbiota showed significant temporal differences in the rhizosphere and bulk soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!