Metal halide perovskite semiconductor nanocrystals have emerged as a lucrative class of materials for many optoelectronic applications. By leveraging the synthetic toolboxes developed from decades of research into more traditional semiconductor nanocrystals, remarkable progress has been made across these materials in terms of their structural, compositional, and optoelectronic control. Here, we review this progress in terms of their underlying formation stages, synthetic approaches, and postsynthetic treatment steps. This assessment highlights the rapidly maturing nature of the perovskite nanocrystal field, particularly with regard to their lead-based derivatives. It further demonstrates that significant challenges remain around precisely controlling their nucleation and growth processes. In going forward, a deeper understanding of the role of precursors and ligands will significantly bolster the versatility in the size, shape, composition, and functional properties of these exciting materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b00855 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, India.
Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 63798, Singapore.
The corrugated <110> oriented layered metal halide perovskites (MHP) are gaining increased attention for a variety of properties including intrinsic white light emission. One prototypical candidate is 1-(3-aminopropyl)imidazole lead bromide, which was reported to crystallize as the <110> oriented perovskite (API)PbBr [API = 1-(3-aminopropyl)imidazole]. This work shows that under similar reaction conditions, the same components can instead form (API)PbBr, which has a "perovskitoid" structure.
View Article and Find Full Text PDFChemistryOpen
January 2025
University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France.
The direct electrochemical carboxylation of aryl, benzyl and alkyl halides by CO is described using a magnesium anode and a nickel foam cathode in an undivided cell. The process employs a sacrificial anode and does not require the additional use of a transition metal catalyst or demanding conditions, as the reactions are carried out under galvanostatic mode, at -10 °C and with commercial DMF. Under these operationally simple conditions, an important range of carboxylic acids are affordable.
View Article and Find Full Text PDFMetal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
Electrocatalytic dehalogenative deuteration is a sustainable method for precise deuteration, whereas its Faradaic efficiency (FE) is limited by a high overpotential and severe D evolution reaction (DER). Here, Cu site-adjusted adsorption and crown ether-reconfigured interfacial DO are reported to cooperatively increase the FE of dehalogenative deuteration up to 84% at -100 mA cm. Cu sites strengthen the adsorption of aryl iodides, promoting interfacial mass transfer and thus accelerating the kinetics toward dehalogenative deuteration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!