Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Raman scattering is intrinsically faint. Raman spectroscopy would be more valuable with improvements in the signal detection efficiency. To improve the signal detection efficiency, we propose a vertical flow method, which is a derivative of the liquid core optical fiber technique employed for sensitive Raman signal detection. In the vertical flow method, the sample solution flows from a pinhole to prepare a liquid column wrapped with air and uses total reflection at the sample-air interface to confine the excitation beam and Raman signal. The Raman signal emerges from the pinhole for efficient collection. This method enhanced Raman signal intensity by up to 90 times. When measuring a bovine serum albumin aqueous solution, the limit of detection (LOD) was 0.029 ± 0.003 mg mL (0.44 ± 0.05 μM). We discuss the signal enhancement factor dependence on several parameters in the vertical flow method. Our method provides a simple technique to improve Raman spectroscopy sensitivity using universal materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b01472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!