Metabolic Labeling and Structural Analysis of Glycosylphosphatidylinositols from Parasitic Protozoa.

Methods Mol Biol

Med. Zentrum für Hygiene und Med. Mikrobiologie, Philipps-Universität Marburg, Germany and Université des Sciences et Technologies de Lille, Villeneuve D'Ascq Cedex, France.

Published: January 2020

Glycosylphosphatidylinositol (GPI) is a complex glycolipid structure that acts as a membrane anchor for many cell-surface proteins of eukaryotes. GPI-anchored proteins are particularly abundant in protozoa and represent the major carbohydrate modification of many cell-surface parasite proteins. A minimal GPI-anchor precursor consists of core glycan (ethanolamine-PO-Manα1-2Manα1-6Manα1-4GlcNH) linked to the 6-position of the D-myo-inositol ring of phosphatidylinositol. Although the GPI core glycan is conserved in all organisms, many differences in additional modifications to GPI structures and biosynthetic pathways have been reported. The preassembled GPI-anchor precursor is post-translationally transferred to a variety of membrane proteins in the lumen of the endoplasmic reticulum in a transamidase-like reaction during which a C-terminal GPI attachment signal is released. Increasing evidence shows that a significant proportion of the synthesized GPIs are not used for protein anchoring, particularly in protozoa in which a large amount of free GPIs are being displayed at the cell surface. The characteristics of GPI biosynthesis are currently being explored for the development of parasite-specific inhibitors. Especially this pathway, at least for Trypanosoma brucei, has been validated as a drug target. Furthermore, thanks to an increase of new innovative strategies to produce pure synthetic carbohydrates, a novel era in the use of GPIs in diagnostic, anti-GPI antibody production, as well as parasitic protozoa GPI-based vaccine approach is developing fast.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9055-9_10DOI Listing

Publication Analysis

Top Keywords

parasitic protozoa
8
gpi-anchor precursor
8
core glycan
8
gpi
5
metabolic labeling
4
labeling structural
4
structural analysis
4
analysis glycosylphosphatidylinositols
4
glycosylphosphatidylinositols parasitic
4
protozoa
4

Similar Publications

Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms.

View Article and Find Full Text PDF

Thrips tabaci is the main thrips species affecting onion and related species. It is a cryptic species complex comprising three phylogenetic groups characterized by different reproductive modes (thelytoky or arrhenotoky) and host plant specialization. Thrips tabaci populations vary widely in genetic diversity, raising questions about the factor(s) that drive this diversity.

View Article and Find Full Text PDF

The three rickettsial parasites- Babesia bovis, Theileria annulata and Anaplasma Marginale are responsible for causing Babesiosis, Theileriosis and Anaplasmosis among cattle. These diseases exist due to spreading of infected ticks. A large number of cattle were found to suffer from mixed infections caused by the three parasites at the same time.

View Article and Find Full Text PDF

Background: Schistosoma haematobium is the causative pathogen for urogenital schistosomiasis. To achieve progress towards schistosomiasis elimination, there is a critical need for developing highly sensitive and specific tools to monitor transmission in near-elimination settings. Although antibody detection is a promising approach, it is usually unable to discriminate active infections from past ones.

View Article and Find Full Text PDF

Background: Mucosal leishmaniasis (ML) is a severe clinical form of leishmaniasis that is characterized by the destruction of the nasal and/or the oral mucosae and appears as a late complication in 5% to 10% of cutaneous leishmaniasis (CL) cases produced by species belonging to Leishmania (Viannia) subgenus. Some strains of Leishmania spp. carry an RNA virus known as Leishmania RNA virus (LRV) that may contribute to the appearance of ML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!