Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ischemic stroke is the leading cause of human disability and mortality in the world. The main problem in stroke therapy is the search of efficient neuroprotector capable to rescue neurons in the potentially salvageable transition zone (penumbra), which is expanding after brain damage. The data on molecular mechanisms of penumbra formation and expression of diverse signaling proteins in the penumbra during first 24 h after ischemic stroke are discussed. Two basic features of cell death regulation in the ischemic penumbra were observed: (1) both apoptotic and anti-apoptotic proteins are simultaneously over-expressed in the penumbra, so that the fate of individual cells is determined by the balance between these opposite tendencies. (2) Similtaneous and concerted up-regulation in the ischemic penumbra of proteins that execute apoptosis (caspases 3, 6, 7; Bcl-10, SMAC/DIABLO, AIF, PSR), signaling proteins that regulate different apoptosis pathways (p38, JNK, DYRK1A, neurotrophin receptor p75); transcription factors that control expression of various apoptosis regulation proteins (E2F1, p53, c-Myc, GADD153); and proteins, which are normally involved in diverse cellular functions, but stimulate apoptosis in specific situations (NMDAR2a, Par4, GAD65/67, caspase 11). Hence, diverse apoptosis initiation and regulation pathways are induced simultaneously in penumbra from very different initial positions. Similarly, various anti-apoptotic proteins (Bcl-x, p21/WAF-1, MDM2, p63, PKBα, ERK1, RAF1, ERK5, MAKAPK2, protein phosphatases 1α and MKP-1, estrogen and EGF receptors, calmodulin, CaMKII, CaMKIV) are upregulated. These data provide an integral view of neurodegeneration and neuroprotection in penumbra. Some discussed proteins may serve as potential targets for anti-stroke therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10495-019-01556-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!