There is considerable interest in adverse outcome pathways (AOPs) as a means of organizing biological and toxicological information to assist in data interpretation and method development. While several chemical sectors have shown considerable progress in applying this approach, this has not been the case in the food sector. In the present study, safety evaluation reports of food additives listed in Annex II of Regulation (EC) No 1333/2008 of the European Union were screened to qualitatively and quantitatively characterize toxicity induced in laboratory animals. The resulting database was used to identify the critical adverse effects used for risk assessment and to investigate whether food additives share common AOPs. Analysis of the database revealed that often such scrutiny of AOPs was not possible or necessary. For 69% of the food additives, the report did not document any adverse effects in studies based on which the safety evaluation was performed. For the remaining 31% of the 326 investigated food additives, critical adverse effects and related points of departure for establishing health-based guidance values could be identified. These mainly involved effects on the liver, kidney, cardiovascular system, lymphatic system, central nervous system and reproductive system. AOPs are available for many of these apical endpoints, albeit to different degrees of maturity. For other adverse outcomes pertinent to food additives, including gastrointestinal irritation and corrosion, AOPs are lacking. Efforts should focus on developing AOPs for these particular endpoints.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-019-02501-x | DOI Listing |
Food Sci Nutr
January 2025
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia University of Belgrade Belgrade Serbia.
(L.) Roxb. and (L.
View Article and Find Full Text PDFTransl Anim Sci
January 2025
Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada.
A study was conducted to assess growth performance, methane (CH) emissions, and feeding behavior of feedlot steers consuming backgrounding and finishing diets with an essential oil blend (EO), monensin (Mon), and their combination (EO + Mon). The study was structured as a 2 × 2 factorial, with two feed additive treatments (Control, EO) and two monensin treatments (no Monensin, Monensin). One hundred Angus × steers were evenly distributed across each treatment into four pens, and each dietary phase consisted of four, 28-d periods.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Our previous study revealed a link between O-GlcNAc transferase (OGT) localization and protein phosphatase 2A (PP2A) activity in osteoblast. Given the association of PP2A downregulation with osteoblast differentiation, we hypothesized that OGT localization changes during this process. We examined OGT localization in MC3T3-E1 cells undergoing differentiation under normal and high glucose conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!