Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common dose-limiting side effect of several anticancer medications. CIPN may involve multiple areas of the peripheral nervous system from the autonomic and dorsal root ganglia (DRG) to the axon and any peripheral nerve fibre type. Large diameter sensory myelinated (Aβ) fibres are more frequently involved, but motor, small myelinated (Aδ), unmyelinated (C) or autonomic fibres may also be affected. Here, we review the current evidence on techniques for the CIPN assessment in the clinical and experimental settings. Nerve conduction studies (NCS) may be used at the subclinical and early CIPN stage, to assess the extent of large nerve fibre damage and to monitor long-term outcomes, with the sural or dorsal sural nerve as the most informative. The quantitative sensory neurological examination provides valuable data alongside NCS. Quantitative sensory testing and nerve excitability studies add information regarding pathophysiology. Nerve MRI and ultrasound may provide information on enlarged nerve, increased nerve signal intensity and DRG or spinal cord changes. Skin biopsy, corneal confocal microscopy, laser-evoked potentials, contact heat-related potentials and microneurography may reveal the extent of damage to small unmyelinated nerve fibres that go undetected by NCS. The information on the role of these latter techniques is preliminary. Hence, the use of multimodal testing is recommended as the optimal CIPN assessment strategy, employing objective NCS and other specialised techniques together with subjective patient-reported outcome measures.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jnnp-2019-320969DOI Listing

Publication Analysis

Top Keywords

nerve
9
chemotherapy-induced peripheral
8
peripheral neurotoxicity
8
nerve fibre
8
cipn assessment
8
quantitative sensory
8
cipn
5
neurophysiological nerve
4
nerve imaging
4
techniques
4

Similar Publications

Background: nowadays, the photoacoustic imaging is in the mainstream of cancer theranostics. In this study the nanoparticles with previously proven photoacoustic imaging properties, i.e.

View Article and Find Full Text PDF

Background: Trigeminal neuralgia (TN) is a prevalent and debilitating craniofacial pain disorder characterized by severe, unilateral, shock-like pain. Standard treatments include anti-epileptic drugs and surgical interventions, but many patients experience limited relief or adverse effects. Non-invasive therapies, such as transcutaneous electrical nerve stimulation (TENS), have emerged as alternative options.

View Article and Find Full Text PDF

Background: Cochlear implants (CIs) are neuroprosthetic devices which restore hearing in severe-to-profound hearing loss through electrical stimulation of the auditory nerve. Current CIs use an externally worn audio processor. A long-term goal in the field has been to develop a device in which all components are contained within a single implant.

View Article and Find Full Text PDF

After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery.

View Article and Find Full Text PDF

Understanding vibrissal transduction has advanced by serial sectioning and identified afferent recordings, but afferent mapping onto the complex, encapsulated follicle remains unclear. Here, we reveal male rat C2 vibrissa follicle innervation through synchrotron X-ray phase contrast tomograms. Morphological analysis identified 5% superficial, ~32 % unmyelinated and 63% myelinated deep vibrissal nerve axons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!