Previous research has focused on dissolved organic carbon (DOC) as a surrogate for soluble microbial products (SMPs) and found that temperature has a significant influence on the production of SMP-based DOC (SDOC) during biological processes. Little is known about the SMP-based dissolved organic nitrogen (SDON), although some nitrogenous organic matter has been identified as an important part of SMPs. This study investigated the effect of temperature (8 °C, 15 °C and 25 °C) on the characterization of SMPs in an activated sludge system with special emphasis on SDON. Results showed the positive effect of reduced temperature on SDON production. Fluorescence spectroscopy and ultrahigh-resolution mass spectrometry showed the produced SDON at 8 °C and 15 °C exhibits more lability than at 25 °C. This was also supported by the algal bioassay, indicating the SDON produced at low temperature is highly bioavailable and prone to stimulate algae and microorganisms. In addition, principal component analysis demonstrated that the effect of temperature on the chemical characterization of SDON is different from that of SDOC. Overall, this study highlights the importance of SDON control during biological processes at a low temperature to reduce the potential impact of effluent SMPs on receiving waters or wastewater reuse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.06.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!