Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ni-Fe Layered Double Hydroxides (Ni-Fe LDHs) was prepared, characterized and used as catalyst in heterogeneous catalytic ozonation of Bisphenol A (BPA) and other organic compounds in secondary effluent. The characterization and ozonation results revealed that the Ni-Fe LDHs possessing a Ni: Fe ratio of 3:1 had the best crystalline and the highest affinity for ozone. Under the optimized conditions, the final TOC and COD removal achieved was 56% and 68%, respectively. BPA in the secondary effluent could be removed completely by Ni-Fe LDH catalyzed ozonation. The organic compounds removal was mainly attributed to the oxidation by free active radicals such as hydroxyl radicals (OH). In this research the accumulative ·OH in the reaction system was determined to be 28.2 μmol at the reaction time of 60 min. The free active radicals were mostly generated through the electron transfer among different valences of metals on Ni-Fe LDHs surface, and subsequently diffused into bulk solution to oxidize the target organic compounds there.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.06.162 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!