Microbial electrochemical technologies (MET) are increasingly being considered for in situ remediation of contaminated groundwater. However, their application potential for the simultaneous treatment of complex mixtures of organic and inorganic contaminants, has been only marginally explored. Here we have analyzed the performance of the 'bioelectric well', a previously developed bioelectrochemical reactor configuration, in the treatment of benzene, toluene, ethyl-benzene and xylenes (BTEX) mixtures. Although to different extents, all BTEX were found to be degraded in the bioelectrochemical system, operated using a continuous-flow of groundwater at a hydraulic retention time of 8.8 h, with the graphite anode potentiostatically controlled at +0.200 V vs. the standard hydrogen electrode. In the case of toluene and ethyl-benzene, biodegradation was further confirmed by the GC-MS identification of fumarate-addition metabolites, previously shown to be involved in the activation of these contaminants under anaerobic conditions. Degradation rates were higher for toluene (31.3 ± 1.5 mg/L d) and lower for benzene (6.1 ± 0.3 mg/L d), ethyl-benzene (3.3 ± 0.1 mg/L d), and xylenes (4.5 ± 0.2 mg/L d). BTEX degradation was linked to electric current generation, with coulombic efficiencies falling in the range 53-69%, although methanogenesis also contributed to contaminant degradation. Remarkably, the system also allowed removal of sulfate simultaneously with toluene. Sulfate removal was likely driven by the hydrogen abiotically generated at the cathode. Taken as a whole, these findings highlight the remarkable potential of this innovative reactor configuration for application in a variety of contamination scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2019.06.004DOI Listing

Publication Analysis

Top Keywords

reactor configuration
8
toluene ethyl-benzene
8
bioelectrochemical treatment
4
treatment groundwater
4
btex
4
groundwater btex
4
btex continuous-flow
4
continuous-flow system
4
system substrate
4
substrate interactions
4

Similar Publications

An open-source modeling platform, called Anaerobic Digestion Model No. 1 Fast (ADM1F), is introduced to achieve fast and numerically stable simulations of anaerobic digestion processes. ADM1F is compatible with an iPython interface to facilitate model configuration, simulation, data analysis, and visualization.

View Article and Find Full Text PDF

The increasing presence of emerging pollutants (EPs) in water poses significant environmental and health risks, necessitating effective treatment solutions. Originating from industrial, agricultural, and domestic sources, these contaminants threaten ecological and public health, underscoring the urgent need for innovative and efficient treatment methods. TiO-based semiconductor photocatalysts have emerged as a promising approach for the degradation of EPs, leveraging their unique band structures and heterojunction schemes.

View Article and Find Full Text PDF

Wastewater treatment processes are continually evolving to meet stringent environmental standards while optimizing energy consumption and operational costs. With significant advantages over more traditional approaches, the anammox process has become a hopeful substitute for nitrogen removal. The objective of this work was to evaluate upflow anaerobic sludge blanket reactor (UASBR), moving bed biofilm reactor (MBBR), and sequential batch reactor (SBR) among diverse reactor configurations, in culturing anammox bacteria and achieving nitrogen removal efficiencies.

View Article and Find Full Text PDF

Online Monitoring of Catalytic Processes by Fiber-Enhanced Raman Spectroscopy.

Sensors (Basel)

November 2024

Savannah River National Laboratory, 301 Gateway Drive, Aiken, SC 29803, USA.

An innovative solution for real-time monitoring of reactions within confined spaces, optimized for Raman spectroscopy applications, is presented. This approach involves the utilization of a hollow-core waveguide configured as a compact flow cell, serving both as a conduit for Raman excitation and scattering and seamlessly integrating into the effluent stream of a cracking catalytic reactor. The analytical technique, encompassing device and optical design, ensures robustness, compactness, and cost-effectiveness for implementation into process facilities.

View Article and Find Full Text PDF

Functional characteristics and mechanisms of microbial community succession and assembly in a long-term moving bed biofilm reactor treating real municipal wastewater.

Environ Res

December 2024

Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China. Electronic address:

Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!