Extracellular matrix (ECM) is comprised of different types of proteins, which change in composition and ratios during morphogenesis and disease progression. ECM proteins provide cell adhesion and impart mechanical cues to the cells. Increasing substrate stiffness has been shown to induce Yes-associated protein (YAP) translocation from the cytoplasm to the nucleus, yet these mechanistic studies used fibronectin only as the biochemical cue. How varying the types of ECM modulates mechanotransduction of stem cells remains largely unknown. Using polyacrylamide hydrogels with tunable stiffness as substrates, here we conjugated four major ECM proteins commonly used for cell adhesion: fibronectin, collagen I, collagen IV and laminin, and assessed the effects of varying ECM type and density on YAP translocation in human mesenchymal stem cells (hMSCs). For all four ECM types, increasing ECM ligand density alone can induce YAP nuclear translocation without changing substrate stiffness. The ligand threshold for such biochemical ligand-induced YAP translocation differs across ECM types. While stiffness-dependent YAP translocation can be induced by all four ECM types, each ECM requires a different optimized ligand density for this to occur. Using antibody blocking, we further identified integrin subunits specifically involved in mechanotransduction of different ECM types. Finally, we demonstrated that altering ECM type further modulates hMSC osteogenesis without changing substrate stiffness. These findings highlight the important role of ECM type in modulating mechanotransduction and differentiation of stem cells, and call for future mechanistic studies to further elucidate the role of changes in ECM compositions in mediating mechanotransduction during morphogenesis and disease progression. STATEMENT OF SIGNIFICANCE: Our study addresses a critical gap of knowledge in mechanobiology. Increasing substrate stiffness has been shown to induce nuclear YAP translocation, yet only on fibronectin-coated substrates. However, extracellular matrix (ECM) is comprised of different protein types. How varying the type of ECM modulates stem cell mechanotransduction remains largely unknown. We here reveal that the choice of ECM type can directly modulate stem cell mechanotransduction, filling this critical gap. This work has broad impacts in mechanobiology and biomaterials, as it provides the first evidence that varying ECM type can impact YAP translocation independent of substrate stiffness, opening doors for a more rational biomaterials design tuning ECM properties to control cell fate for promoting normal development and for preventing disease progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8735670 | PMC |
http://dx.doi.org/10.1016/j.actbio.2019.06.048 | DOI Listing |
Immunohorizons
January 2025
Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Antibody (Ab) crosslinking of HLA class II (HLA II) molecules on the surface of endothelial cells (ECs) triggers proliferative and prosurvival intracellular signaling, which are implicated in promoting chronic Ab-mediated rejection (cAMR). Despite the importance of cAMR in transplant medicine, the mechanisms involved remain incompletely understood. Here, we examined the regulation of yes-associated protein (YAP) nuclear cytoplasmic localization and phosphorylation in human ECs challenged with Abs that bind HLA II, which are strongly associated with cAMR.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
School of Medicine, Shanghai University, Shanghai, 200444, China.
Background: Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure.
Methods: Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture.
Gene
January 2025
Department of Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, China.
Objective: Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal interstitial lung disease, characterized by excessive extracellular matrix (ECM) secretion that disrupts normal alveolar structure. This study aims to explore the potential molecular mechanisms underlying the promotion of IPF development.
Methods: Firstly, we compared the transcriptome and single-cell sequencing data from lung tissue samples of patients with IPF and healthy individuals.
Adv Healthc Mater
January 2025
Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!