To lower the effect of climate change from cattle production, we should aim at decreasing their enteric methane emissions per kilogram of milk or meat. Glycerol may be absorbed through the rumen epithelium and would consequently be less available to microbes in the rumen. Glycerol could thus supply dairy cows with energy for milk production without contributing much to methane production. This study evaluated the effect of replacing wheat starch with glycerol on milk production, feed intake, and methane emissions. Twenty-two Swedish Red cows in mid lactation were used in a switch-back, change-over experiment with 3 periods of 21 d. The 2 dietary treatments consisted of a total mixed ration based on (g/kg of dry matter) grass silage (605), rapeseed meal (120), and barley (70) and either wheat starch or refined glycerol (200) fed ad libitum. The glycerol diet resulted in higher dry matter intake (21.6 vs. 20.1 kg/d) and methane emissions (482 vs. 423 g/d) compared with the diet containing wheat starch, whereas no difference was found in energy-corrected milk yield (28.4 vs. 29.7 kg/d). These results indicate that when glycerol is mixed with the feed, it is available to rumen microbes to a larger extent than initially assumed. Compared with wheat starch, adding refined glycerol (200 g/kg of dry matter) to the feed of dairy cows does not seem to have the potential to decrease enteric methane emissions.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2018-15629DOI Listing

Publication Analysis

Top Keywords

wheat starch
20
methane emissions
20
milk production
12
dairy cows
12
dry matter
12
replacing wheat
8
glycerol
8
starch glycerol
8
production feed
8
enteric methane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!