Based on the hypothesis that urban activities can deposit chemical contaminants in soil and consequently have an impact on the vitality of key organisms of the ecosystem, the aim of the present study was to analyse genotoxicity in earthworm's coelomocytes in urban soil samples in comparison to soil samples from protected areas. Earthworms (Eisenia andrei) were exposed to soil samples for 14 days, subsequently the coelomocytes were extracted with an 10% ethanol solution and used in single cell gel electrophoresis (SCGE) assay and the micronucleus (MN) assay. The levels of copper, cadmium, lead, zinc, and arsenic were measured in monitored soil samples. Earthworms exposed to urban soils had higher levels of DNA damage, according to the results of the SCGE assay, than earthworms exposed to protected area soils. The frequency of micronuclei did not differ between the studied soil samples. There was an association between % DNA (SCGE assay) and arsenic and zinc levels. Copper, lead and zinc levels in urban soil samples exceeded the limits of legal values in Brazil. Our findings show that the genotoxicity markers we tested are sensitive to contamination and this association should be taken into account by regulatory agencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrgentox.2019.02.007 | DOI Listing |
Environ Sci Technol
January 2025
State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Despite advancements in high-resolution screening techniques, the identification of novel perfluoroalkyl and polyfluoroalkyl substances (PFAS) remains challenging without prior structural information. In view of this, we proposed and implemented a new data-driven algorithm to calculate spectral similarity among PFAS, facilitating the generation of molecular networks to screen for unknown compounds. Using this approach, 81 PFAS across 12 distinct classes were identified in soil samples collected near an industrial park in Shandong Province, China, including the first reported occurrence of 12 iodine-substituted PFAS.
View Article and Find Full Text PDFHeliyon
January 2025
ICAR-IIRR, Indian Institute of Rice Research, Hyderabad, 500 030, India.
Arbuscular mycorrhizal Fungi (AMF) are essential in agriculture and are often inter-linked with glomalin-related soil protein (GRSP) production which supports binding of aggregates, enhanced SOC and biological attributes. However, conservation agricultural practices in agroecosystem may have significant impact on AMF diversity, GRSP and soil quality-related parameters (SQRPs). This current experiment was implemented to gauge AMF conization percentage (AMF-CP), GSRP and significant changes on critical SQRPs, and to investigate the linkages between AMF-CP, GRSP and SQRPs as influenced by synergistic tillage and weed management in CA.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
Poly- and perfluoroalkyl substances (PFASs) are a large class of fluorinated chemicals used in various industrial and agrochemical products such as fluorinated benzoylurea (FBU) pesticides. Initiated from an incidental and preliminary finding of three high-abundance FBUs in fish, this study implemented nontarget analysis and characterization for FBUs together with their analogues and transformation products (TPs) in fish using liquid chromatography, high-resolution mass spectrometry, and chemical species-specific algorithms. A total of 23 FBU-relevant compounds were found and tentatively/accurately elucidated with structures, including 18 PFASs and 5 non-PFAS compounds, of which 4 were original FBUs, 8 were FBU analogues, and 11 were FBU-TPs.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.
View Article and Find Full Text PDFSci Rep
January 2025
Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.
The accumulation and discharge amount of coal gangue are substantial, occupying significant land resources over time. Utilizing coal gangue as subgrade filler can generate notable economic and social benefits. Coal gangue coarse-grained soil (CGSF) was used to conduct a series of large-scale vibration compaction tests and large-scale triaxial tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!