Water can adsorb molecularly or dissociatively onto different sites of metal oxide surfaces. These adsorption sites can be disentangled using surface-sensitive vibrational spectroscopy. Here, we model Vibrational Sum Frequency (VSF) spectra for various forms of dissociated, deuterated water on a reconstructed, Al-terminated α-AlO(0001) surface at submonolayer coverages (the so-called 1-2, 1-4, and 1-4' modes). Using an efficient scheme based on velocity-velocity autocorrelation functions, we go beyond previous normal mode analyses by including anharmonicity, mode coupling, and thermal surface motion in the framework of ab initio molecular dynamics. In this way, we calculate vibrational density of states curves, infrared, and VSF spectra. Comparing computed VSF spectra with measured ones, we find that relative frequencies of resonances are in quite good agreement and linewidths are reasonably well represented, while VSF intensities coincide not well. We argue that intensities are sensitively affected by local interactions and thermal fluctuations, even at such low coverage, while absolute peak positions strongly depend on the choice of the electronic structure method and on the appropriate inclusion of anharmonicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5099895 | DOI Listing |
J Phys Chem A
July 2023
School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States.
As concerns rise about the health risks posed by per- and polyfluoroalkyl substances (PFAS) in the environment, there is a need to understand how these pollutants accumulate at environmental interfaces. Untangling the details of molecular adsorption, particularly when there are potential interactions with other molecules in environmental systems, can obscure the ability to focus on a particular contaminant with molecular specificity. Often adsorption studies of environmental interfaces require a reductionist approach, where laboratory experiments may not be fully tractable to environmental systems.
View Article and Find Full Text PDFJ Phys Chem B
June 2021
Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States.
The vibrational spectrum of water at hydrophobic/hydrophilic interfaces is crucial to understanding complex surface chemistry phenomena. Vibrational sum frequency (VSF) spectroscopy is a valuable nonlinear spectroscopic technique for exploring the details of vibrational spectra of molecules at surfaces. However, spectral assignments and analysis of VSF spectra are often more nuanced than in linear spectroscopy.
View Article and Find Full Text PDFJ Phys Chem B
April 2021
Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States.
The development of vibrational sum-frequency scattering (S-VSF) spectroscopy has opened the door to directly probing nanoparticle surfaces with an interfacial and chemical specificity that was previously reserved for planar interfacial systems. Despite its potential, challenges remain in the application of S-VSF spectroscopy beyond simplified chemical systems. One such challenge includes infrared absorption by an absorptive continuous phase, which will alter the spectral lineshapes within S-VSF spectra.
View Article and Find Full Text PDFLangmuir
March 2020
Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403 United States.
Polymer-surfactant mixtures are versatile chemical systems because of their ability to form a variety of complexes both in bulk solution and at surfaces. The adsorption and structure of polymer-surfactant complexes at the oil/water interface define their use surface chemistry applications. Previous studies have investigated the interactions between charged polyelectrolytes and surfactants; however, a similar level of insight into the interfacial behavior of nonionic polymers in mixed systems is lacking.
View Article and Find Full Text PDFJ Phys Chem A
December 2019
Department of Chemistry , University of Oregon , 1253 University of Oregon, Eugene , Oregon 97403 , United States.
It is well known that atmospheric aerosol play important roles in the environment. However, there is still much to learn about the processes that form aerosols, particularly aqueous secondary organic aerosols. While pyruvic acid (PA) is often better known for its biological significance, it is also an abundant atmospheric secondary organic ketoacid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!