Anammox bacteria are the key microbes after denitrifiers in the anaerobic environment. Nitrogen gap cannot be satisfied till date even with the advanced techniques, due to complex microbial network and different pathways. Recently, anaerobic fungi are the concerning point to investigate, which was previously ignored for a long time. Study was conducted with the aim of assessment of an individual and combined contribution of anammox, co-denitrification, and denitrification processes for N losses, under different organic-chemical fertilizers, i.e. 1) control _CK; 2) chemical fertilization _CF; 3) pig manure plus chemical fertilization _PMCF; and 4) straw returned plus chemical fertilization _SRCF). Hybrid techniques of C-DNA-Stable isotope and N isotopic tracer were used to discriminate the contribution of anammox-co-fungi using antibacterial and antifungal inhibitors. Results showed that fungi are the major culprit in N losses; the overall contribution rate by anammox-co-denitrification was 14.82-29.74%. While in case of individual N losses, fungi were dominating the N losses (3.51-25.60%, AB) than bacteria (7.50-21.80%, AF). The anammox and fungi have a positive correlation with each other's (r = 0.67), principal component analysis (PCA) and correlation analysis validate each other (anammox and fungi), and both showed the same type of attraction to the soil physicochemical properties. However, fungi did not show a significant relationship with NH-N (r = 0.38). A clone library of C-DNA-SIP was constructed, and results showed that denitrifying fungi were very likely belonges to the genera Agaricus, Aspergillus, Phycomyces, Saitoella, and Trichoderma. Conclusively, we propose that fertilization pattern can change anammox activity and abundance, but fungal activity and community structure undergo changes with organic amendments rather than inorganic fertilizers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2019.104913DOI Listing

Publication Analysis

Top Keywords

chemical fertilization
12
anammox fungi
8
fungi
7
anammox
6
anammox co-fungi
4
co-fungi accompanying
4
accompanying denitrifying
4
denitrifying bacteria
4
bacteria thieves
4
thieves nitrogen
4

Similar Publications

Excessive use of chemical fertilizers and extensive farming can degrade soil properties so that leading to decline in crop yields. Combining plant growth-promoting rhizobacteria (PGPR) with biochar (BC) may be an alternative way to mitigate this situation. However, the proportion of PGPR and BC at which crop yield can be improved, as well as the improvement effect extent on different eco-geographic region and crops, remain unclear.

View Article and Find Full Text PDF

Extracts of medicinal seeds can be used to synthesize nanoparticles (NPs) in more environmentally friendly ways than physical or chemical ways. For the first time, aqueous extract from unexploited grape seeds was used in this study to create Se/ZnO NPS utilizing a green technique, and their antimicrobial activity, cytotoxicity, antioxidant activities, and plant bio stimulant properties of the economic Vicia faba L. plant were evaluated.

View Article and Find Full Text PDF

To ensure the correct euploid state of embryos, it is essential that vertebrate oocytes await fertilization arrested at metaphase of meiosis II. This MII arrest is mediated by XErp1/Emi2, which inhibits the ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome). Cyclin B3 in complex with Cdk1 (cyclin-dependent kinase 1) is essential to prevent an untimely arrest of vertebrate oocytes in meiosis I by targeting XErp1/Emi2 for degradation.

View Article and Find Full Text PDF
Article Synopsis
  • Chickpeas and apricots are economically significant crops that suffer from severe fungal infections, traditionally managed with chemical fungicides that pose health and environmental risks.
  • Myco-synthesized (from fungi) and bacteria-synthesized zinc oxide (ZnO) nanoparticles were compared for their antifungal effectiveness against specific pathogens affecting these crops.
  • Results showed that myco-synthesized ZnO nanoparticles exhibited better antifungal properties at lower concentrations, highlighting the need for further research to enhance their application in agriculture as sustainable alternatives to chemical fungicides.
View Article and Find Full Text PDF

Evaluation of Performance and Stability of a Gel-Type Polymer Sorbent for Recovery of Phosphate from Waste Streams.

ACS Appl Polym Mater

December 2024

School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, BT9 5AG Belfast, Northern Ireland, U.K.

Phosphorus (P) fertilizer is an essential component of our food system with the majority of all mined P rock processed to make mineral fertilizers. Globally however P rock stocks are declining-both in quality and quantity-with poor P management creating a linear economic system where P is mined, globally redistributed into products and eventually discharged into the environment leading to eutrophication. To enable establishment of a circular P economy, whereby P can be recovered from waste for its industrial reuse, requires the development of effective P recovery technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!