P7 and P8 proteins of High Plains wheat mosaic virus, a negative-strand RNA virus, employ distinct mechanisms of RNA silencing suppression.

Virology

United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA. Electronic address:

Published: September 2019

High Plains wheat mosaic virus (genus Emaravirus), an octapartite negative-sense RNA virus, encodes two RNA silencing suppressors, P7 and P8. In this study, we found that P7 and P8 efficiently delayed the onset of dsRNA-induced transitive pathway of RNA silencing. Electrophoretic mobility shift assays (EMSA) revealed that only P7 protected long dsRNAs from dicing in vitro and bound weakly to 21- and 24-nt PTGS-like ds-siRNAs. In contrast, P8 bound strongly and relatively weakly to 21- and 24-nt ds-siRNAs, respectively, suggesting size-specific binding. In EMSA, neither protein bound to 180-nt and 21-nt ssRNAs at detectable levels. Sequence analysis revealed that P7 contains a conserved GW motif. Mutational disruption of this motif resulted in loss of suppression of RNA silencing and pathogenicity enhancement, and failure to complement the silencing suppression-deficient wheat streak mosaic virus. Collectively, these data suggest that P7 and P8 proteins utilize distinct mechanisms to overcome host RNA silencing for successful establishment of systemic infection in planta.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2019.06.011DOI Listing

Publication Analysis

Top Keywords

rna silencing
20
mosaic virus
12
high plains
8
plains wheat
8
wheat mosaic
8
rna virus
8
distinct mechanisms
8
bound weakly
8
weakly 21-
8
21- 24-nt
8

Similar Publications

Genes involved in DMSO-mediated yield increase of entomopathogenic nematodes.

Sci Rep

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.

View Article and Find Full Text PDF

Programmable and modular systems capable of orthogonal genomic and transcriptomic perturbations are crucial for biological research and treating human genetic diseases. Here, we present the minimal versatile genetic perturbation technology (mvGPT), a flexible toolkit designed for simultaneous and orthogonal gene editing, activation, and repression in human cells. The mvGPT combines an engineered compact prime editor (PE), a fusion activator MS2-p65-HSF1 (MPH), and a drive-and-process multiplex array that produces RNAs tailored to different types of genetic perturbation.

View Article and Find Full Text PDF

Background: RNA silencing-based antiviral breeding is a promising strategy for developing virus-resistant plants.

Objectives: This study employed viral sense, anti-sense, and hairpin constructs to induce resistance against beet curly top virus (BCTV) and beet curly top Iran virus (BCTIV).

Materials And Methods: For this purpose, a 120-bp conserved sequence of Rep- and C2-BCTV and a 222-bp conserved sequence of CP-, Reg-, and MP-BCTIV were selected for construct production.

View Article and Find Full Text PDF

Objective: Long non-coding RNAs (lncRNAs) participate in the formation, progression, and metastasis of cancer. This study aimed to explore the roles of the lncRNA ST8SIA6 antisense RNA 1 (ST8SIA6-AS1) in tumorigenesis and elucidate the underlying molecular mechanism of its upregulation in hepatocellular carcinoma (HCC).

Material And Methods: A total of 56 in-house pairs of HCC tissues were examined, and ST8SIA6-AS1 levels were determined through real-time polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Objective: Potassium voltage-gated channel sub-family A member 1 (Kv1.1), as a shaker homolog potassium channel, displays a special mechanism for posttranscriptional regulation called RNA editing. Adenosine deaminase acting on RNA 2 (ADAR2) can cause abnormal editing or loss of normal editing, which results in cell damage and related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!