Understanding the cracking behaviour of biological composite materials is of practical importance. This paper presents the first study to track the interplay between crack initiation, microfracture and plastic deformation in three dimensions (3D) as a function of tubule and collagen fibril arrangement in elephant dentin using in situ X-ray nano-computed tomography (nano-CT). A nano-indenter with a conical tip has been used to incrementally indent three test-pieces oriented at 0°, 45° and 70° to the long axis of the tubules (i.e. radial to the tusk). For the 0° sample two significant cracks formed, one of which linked up with microcracks in the axial-radial plane of the tusk originating from the tubules and the other one occurred as a consequence of shear deformation at the tubules. The 70° test-piece was able to bear the greatest loads despite many small cracks forming around the indenter. These were diverted by the microstructure and did not propagate significantly. The 45° test-piece showed intermediate behaviour. In all cases strains obtained by digital volume correlation were well in excess of the yield strain (0.9%), indeed some plastic deformation could even be seen through bending of the tubules. The hoop strains around the conical indenter were anisotropic with the smallest strains correlating with the primary collagen orientation (axial to the tusk) and the largest strains aligned with the hoop direction of the tusk. STATEMENT OF SIGNIFICANCE: This paper presents the first comprehensive study of the anisotropic nature of microfracture, crack propagation and deformation in elephant dentin using time-lapse X-ray nano-computed tomography. To unravel the interplay of collagen fibrils and local deformation, digital volume correlation (DVC) has been applied to map the local strain field while the crack initiation and propagation is tracked in real time. Our results highlight the intrinsic and extrinsic shielding mechanisms and correlate the crack growth behavior in nature to the service requirement of dentin to resist catastrophic fracture. This is of wide interest not just in terms of understanding dentin fracture but also can extend beyond dentin to other anisotropic structural composite biomaterials such as bone, antler and chitin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2019.06.042 | DOI Listing |
Meteorit Planet Sci
July 2024
Cornell Institute of Biotechnology, Cornell University, Ithaca, NY.
Estimation of the composition of planetary rocks and minerals is crucial for understanding their formation processes. In this study, we present the application of X-ray nano-computed tomography (nano-XCT) for non-destructive 3D phase analysis and estimation of phase abundances in rare martian meteorite samples, specifically chassignite Northwest Africa (NWA) 2737. We determined the most suitable laser power for minimizing artifacts and maximizing phase contrast.
View Article and Find Full Text PDFBiomater Adv
January 2025
Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL 32816, USA; Biomedical Engineering Program, Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA. Electronic address:
This project aimed to study the efficacy of a bone-targeted ultrasound-responsive nanobubble (NB) platform to deliver gene-silencing cathepsin K (CTSK) siRNA into the bone for osteoporosis treatment using in vitro and in vivo studies. To this end, characterization of CTSK siRNA loaded NB functionalized with alendronate (NB-CTSK siRNA-AL) was performed using transmission electron microscopy (TEM) imaging, and a release profile was obtained through fluorescent spectroscopy. In vitro studies were conducted by culturing NB-CTSK siRNA-AL with osteoclasts to evaluate siRNA uptake, CTSK expression, and the expression of tartrate-resistant acid phosphatase (TRAP).
View Article and Find Full Text PDFBMC Oral Health
October 2024
Liberal Arts and Science Program, Virginia Commonwealth University in Qatar, Al Luqta St. Doha, P.O. Box 8095, Doha, Qatar.
Background: Craniofacial bone regeneration represents a dynamic area within tissue engineering and regenerative medicine. Central to this field, is the continual exploration of new methodologies for template fabrication, leveraging established bio ceramic materials, with the objective of restoring bone integrity and facilitating successful implant placements.
Methods: Photopolymerized templates were prepared using three distinct bio ceramic materials, specifically a wet chemically synthesized bioactive glass and two commercially sourced hydroxyapatite variants.
ACS Nano
August 2024
Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
It is crucial for understanding mechanisms of drug action to quantify the three-dimensional (3D) drug distribution within a single cell at nanoscale resolution. Yet it remains a great challenge due to limited lateral resolution, detection sensitivities, and reconstruction problems. The preferable method is using X-ray nano-computed tomography (Nano-CT) to observe and analyze drug distribution within cells, but it is time-consuming, requiring specialized expertise, and often subjective, particularly with ultrasmall metal nanoparticles (NPs).
View Article and Find Full Text PDFJ Struct Biol
September 2024
Univ Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS UMR 5220, Inserm U1206, CREATIS, 69621 Lyon, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!