Understanding the cracking behaviour of biological composite materials is of practical importance. This paper presents the first study to track the interplay between crack initiation, microfracture and plastic deformation in three dimensions (3D) as a function of tubule and collagen fibril arrangement in elephant dentin using in situ X-ray nano-computed tomography (nano-CT). A nano-indenter with a conical tip has been used to incrementally indent three test-pieces oriented at 0°, 45° and 70° to the long axis of the tubules (i.e. radial to the tusk). For the 0° sample two significant cracks formed, one of which linked up with microcracks in the axial-radial plane of the tusk originating from the tubules and the other one occurred as a consequence of shear deformation at the tubules. The 70° test-piece was able to bear the greatest loads despite many small cracks forming around the indenter. These were diverted by the microstructure and did not propagate significantly. The 45° test-piece showed intermediate behaviour. In all cases strains obtained by digital volume correlation were well in excess of the yield strain (0.9%), indeed some plastic deformation could even be seen through bending of the tubules. The hoop strains around the conical indenter were anisotropic with the smallest strains correlating with the primary collagen orientation (axial to the tusk) and the largest strains aligned with the hoop direction of the tusk. STATEMENT OF SIGNIFICANCE: This paper presents the first comprehensive study of the anisotropic nature of microfracture, crack propagation and deformation in elephant dentin using time-lapse X-ray nano-computed tomography. To unravel the interplay of collagen fibrils and local deformation, digital volume correlation (DVC) has been applied to map the local strain field while the crack initiation and propagation is tracked in real time. Our results highlight the intrinsic and extrinsic shielding mechanisms and correlate the crack growth behavior in nature to the service requirement of dentin to resist catastrophic fracture. This is of wide interest not just in terms of understanding dentin fracture but also can extend beyond dentin to other anisotropic structural composite biomaterials such as bone, antler and chitin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2019.06.042DOI Listing

Publication Analysis

Top Keywords

x-ray nano-computed
12
nano-computed tomography
12
crack propagation
8
propagation deformation
8
paper presents
8
crack initiation
8
plastic deformation
8
elephant dentin
8
digital volume
8
volume correlation
8

Similar Publications

Estimation of the composition of planetary rocks and minerals is crucial for understanding their formation processes. In this study, we present the application of X-ray nano-computed tomography (nano-XCT) for non-destructive 3D phase analysis and estimation of phase abundances in rare martian meteorite samples, specifically chassignite Northwest Africa (NWA) 2737. We determined the most suitable laser power for minimizing artifacts and maximizing phase contrast.

View Article and Find Full Text PDF

Bone-targeted ultrasound-responsive nanobubbles for siRNA delivery to treat osteoporosis in mice.

Biomater Adv

January 2025

Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL 32816, USA; Biomedical Engineering Program, Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA. Electronic address:

This project aimed to study the efficacy of a bone-targeted ultrasound-responsive nanobubble (NB) platform to deliver gene-silencing cathepsin K (CTSK) siRNA into the bone for osteoporosis treatment using in vitro and in vivo studies. To this end, characterization of CTSK siRNA loaded NB functionalized with alendronate (NB-CTSK siRNA-AL) was performed using transmission electron microscopy (TEM) imaging, and a release profile was obtained through fluorescent spectroscopy. In vitro studies were conducted by culturing NB-CTSK siRNA-AL with osteoclasts to evaluate siRNA uptake, CTSK expression, and the expression of tartrate-resistant acid phosphatase (TRAP).

View Article and Find Full Text PDF

Background: Craniofacial bone regeneration represents a dynamic area within tissue engineering and regenerative medicine. Central to this field, is the continual exploration of new methodologies for template fabrication, leveraging established bio ceramic materials, with the objective of restoring bone integrity and facilitating successful implant placements.

Methods: Photopolymerized templates were prepared using three distinct bio ceramic materials, specifically a wet chemically synthesized bioactive glass and two commercially sourced hydroxyapatite variants.

View Article and Find Full Text PDF

It is crucial for understanding mechanisms of drug action to quantify the three-dimensional (3D) drug distribution within a single cell at nanoscale resolution. Yet it remains a great challenge due to limited lateral resolution, detection sensitivities, and reconstruction problems. The preferable method is using X-ray nano-computed tomography (Nano-CT) to observe and analyze drug distribution within cells, but it is time-consuming, requiring specialized expertise, and often subjective, particularly with ultrasmall metal nanoparticles (NPs).

View Article and Find Full Text PDF
Article Synopsis
  • - Osteocytes play a crucial role in bone mechanobiology by communicating mechanical signals through the interconnected lacunocanalicular network (LCN) filled with interstitial fluid.
  • - This study aimed to gather detailed morphological data on the human LCN using advanced imaging techniques, specifically measuring 27 femoral bone samples with a 100 nm voxel size.
  • - Results showed variability in canalicular morphology, with some differences between males and females, although only larger canaliculi were detected; this research is groundbreaking as it presents new data for further investigations on LCN permeability.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!