Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Repetitive mild traumatic brain injury (RmTBI) is a prevalent and costly head injury particularly among adolescents. These injuries may result in long-term consequences, especially during this critical period of development. Insomnia and sleeping difficulties are frequently reported following RmTBI and greatly impair recovery. We sought to develop an animal model of exacerbated deficits following RmTBI by disrupting the hypothalamic circadian system. To accomplish this, we conducted RmTBI on adolescent rats that had received neonatal injections of monosodium glutamate (MSG), a known hypothalamic neurotoxin. We then examined behavioral, circadian, and epigenetic changes. MSG treated rats showed lower anxiety-like behaviors and displayed poor short-term working memory. We also showed changes in the morphology of the circadian clock in the suprachiasmatic nucleus (SCN) vasoactive intestinal polypeptide (VIP) immunostaining. VIP optical density in the SCN increased with MSG but decreased with RmTBI. There were changes in the expression of the clock genes and upregulation of the orexin receptors in response to RmTBI. MSG treated rats had longer telomere lengths than controls. Finally, although both MSG and RmTBI alone produced attenuated circadian amplitudes of activity and body temperature, exacerbated deficits were not identified in animals that received MSG and RmTBI. In sum, both MSG and RmTBI can alter behavior, circadian rhythm amplitude, SCN morphology, and gene expression independently, but the effects do not appear to be additive. Specific damage in the hypothalamus and SCN should be considered when patients experience sleeping problems following RmTBI, as this may improve therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2019.06.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!