Study of the conformational behaviour of trehalose mycolates by FT-IR spectroscopy.

Chem Phys Lipids

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, University Paris-Saclay, F-91198, Gif-sur-Yvette, France.

Published: September 2019

Mycolic acids are fundamental cell wall components, found in the outer membrane barrier (mycomembrane) of Mycobacterium related genera, that have shown antigenic, murine innate immunity inducting and inflammatory activity triggering action. The mycolic acid derivatives, such as the lipid extractable trehalose monomycolates (TMM) and dimycolates (TDM), have been extensively investigated by several biochemical and biological methods and, more recently, we have performed the first neutron scattering measurements on these molecules in order to characterize their dynamical behavior as well as their rigidity properties. In the present paper, we show the first systematic FT-IR study on TMM, TDM and glucose monomycolate (GMM). It includes the analysis of individual lipids but also mixtures of TMM/TDM (ratio of 1:1) or TMM/GMM (ratio of 1:2). The present work is aimed to the first characterization of the vibrational behavior of mycolates and their mixtures enabling us to elucidate the molecular mechanisms responsible for the capability of mycolic acids to affect the flexibility and permeability properties of the mycomembrane. As a whole, the present FT-IR findings provide information that have relevant biological implications, allowing to demonstrate that the membrane fluidity is not only linked to the chain length, but also to the specific conformational behavior adopted by mycolates, which in the mixtures is strongly affected by their mutual interactions. In addition, the capability of trehalose to drive the mycolate conformational behavior and then the chain order and packing is emphasized; due to the TDM relevant evidences shown by our data, this trehalose effect could be related to the TDM toxicity and inflammation action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2019.104789DOI Listing

Publication Analysis

Top Keywords

mycolic acids
8
mycolates mixtures
8
conformational behavior
8
study conformational
4
conformational behaviour
4
trehalose
4
behaviour trehalose
4
trehalose mycolates
4
mycolates ft-ir
4
ft-ir spectroscopy
4

Similar Publications

Four novel nontuberculous mycobacteria were discovered from a historical strain collection at the International Reference Laboratory of Mycobacteriology at Statens Serum Institut in Copenhagen, Denmark. Phylogenetic analysis combining the 16S , internal transcribed spacer and 23S elements, as well as a single-copy core-gene (, , and ) analysis of these freeze-dried mycobacteria, clinically isolated from gastric lavage samples between 1948 and 1955, showed to be associated with type strains grouping within the Terra and Fortuitum-Vaccae clade. Phenotypic characteristics, biochemical properties and fatty acid and mycolic acid profiles supported the classification as novel strains.

View Article and Find Full Text PDF

Manipulation and Structural Activity of AcpM in .

Biochemistry

January 2025

Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.

(Mtb) is a leading cause of death, with an escalating global occurrence of drug-resistant infections that are partially attributed to cell wall mycolic acids derived from type II fatty acid biosynthesis (FAS-II). Here, the central acyl carrier protein, AcpM, contributes to the regulation of complex and specific protein-protein interactions (PPIs), though the orchestration of these events remain largely unresolved due to unique features of AcpM. Limitations include complexities in generating modified AcpM in a single state.

View Article and Find Full Text PDF

Domain architecture of the MabR (), a member of the PucR transcription factor family.

Heliyon

November 2024

Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium.

MabR (), a PucR-type transcription factor, plays a crucial role in regulating mycolic acid biosynthesis in . To understand its regulatory mechanisms, we determined the crystal structures of its N-terminal and C-terminal domains. The N-terminal domain adopts a globin-like fold, while the C-terminal domain comprises an α/β GGDEF domain and an all-α effector domain with a helix-turn-helix DNA-binding motif.

View Article and Find Full Text PDF

Application of Monoclonal Anti-Mycolate Antibodies in Serological Diagnosis of Tuberculosis.

Trop Med Infect Dis

November 2024

Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria 0081, South Africa.

Article Synopsis
  • - Patient loss to follow-up due to expensive and centralized diagnostics for tuberculosis is a major challenge, stressing the need for a more accessible testing method.
  • - Current biomarkers, specifically antibodies against mycolic acids in mycobacterial cell walls, show potential but are hard to detect with typical rapid tests because they are of low affinity.
  • - Researchers have developed a new method for detecting mycolic acid antibodies using engineered monoclonal antibodies, leading to the creation of a novel lateral flow immunoassay called MALIA, which shows promise for practical tuberculosis testing.
View Article and Find Full Text PDF

Tuberculosis continues to pose a health challenge causing the loss of millions of lives despite the existence of multiple drugs, for treatment. The emergence of drug-resistant strains has made the situation more complex making it increasingly difficult to fight against this disease. This review outlines the challenges associated with TB drug discovery, the nature of Mycobacterium tuberculosis shedding light on the mechanisms that lead to treatment failure and antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!