Approximately 50 million Americans have allergic diseases. Airborne plant pollen is a significant trigger for several of these allergic diseases. Ambrosia (ragweed) is known for its abundant production of pollen and its potent allergic effect in North America. Hence, estimating and predicting the daily atmospheric concentration of pollen (ragweed pollen in particular) is useful for both people with allergies and for the health professionals who care for them. In this study, we show that a suite of variables including meteorological and land surface parameters, as well as next-generation radar (NEXRAD) measurements together with machine learning can be used to estimate successfully the daily pollen concentration. The supervised machine learning approaches we used included random forests, neural networks, and support vector machines. The performance of the training is independently validated using 10% of the data partitioned using the holdout cross-validation method from the original dataset. The random forests (R= 0.61, R= 0.37), support vector machines (R= 0.51, R= 0.26), and neural networks (R= 0.46, R= 0.21) effectively predicted the daily Ambrosia pollen, where the correlation coefficient (R) and R-squared (R) values are given in brackets. Three independent approaches-the random forests, correlation coefficients, and interaction information-were employed to rank the relative importance of the available predictors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-019-7428-xDOI Listing

Publication Analysis

Top Keywords

machine learning
12
random forests
12
daily ambrosia
8
ambrosia pollen
8
allergic diseases
8
neural networks
8
support vector
8
vector machines
8
pollen
7
applying machine
4

Similar Publications

Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.

View Article and Find Full Text PDF

A comprehensive benchmarking for evaluating TCR embeddings in modeling TCR-epitope interactions.

Brief Bioinform

November 2024

Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, 999077, China.

The complexity of T cell receptor (TCR) sequences, particularly within the complementarity-determining region 3 (CDR3), requires efficient embedding methods for applying machine learning to immunology. While various TCR CDR3 embedding strategies have been proposed, the absence of their systematic evaluations created perplexity in the community. Here, we extracted CDR3 embedding models from 19 existing methods and benchmarked these models with four curated datasets by accessing their impact on the performance of TCR downstream tasks, including TCR-epitope binding affinity prediction, epitope-specific TCR identification, TCR clustering, and visualization analysis.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).

View Article and Find Full Text PDF

Prediction of dry matter intake in growing Black Bengal goats using artificial neural networks.

Trop Anim Health Prod

January 2025

Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.

Dry matter intake (DMI) determination is essential for effective management of meat goats, especially in optimizing feed utilization and production efficiency. Unfortunately, farmers often face challenges in accurately predicting DMI which leads to wastage of feed and an increase in the cost of production. This investigation aimed to predict DMI in Black Bengal goats by using body weight (BW), body condition score (BCS), average daily gain (ADG), and metabolic body weight (MBW) by applying an artificial neural network (ANN) model.

View Article and Find Full Text PDF

Strategies to increase the robustness of microbial cell factories.

Adv Biotechnol (Singap)

March 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.

Engineering microbial cell factories have achieved much progress in producing fuels, natural products and bulk chemicals. However, in industrial fermentation, microbial cells often face various predictable and stochastic disturbances resulting from intermediate metabolites or end product toxicity, metabolic burden and harsh environment. These perturbances can potentially decrease productivity and titer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!