Intensified East Asian winter monsoon during the last geomagnetic reversal transition.

Sci Rep

Museum of Nature and Human Activities, Hyogo, Sanda, 669-1546, Japan.

Published: June 2019

The strength of Earth's magnetic dipole field controls galactic cosmic ray (GCR) flux, and GCR-induced cloud formation can affect climate. Here, we provide the first evidence of the GCR-induced cloud effect on the East-Asian monsoon during the last geomagnetic reversal transition. Bicentennial-resolution monsoon records from the Chinese Loess Plateau revealed that the summer monsoon (SM) was affected by millennial-scale climate events that occurred before and after the reversal, and that the winter monsoon (WM) intensified independently of SM variations; dust accumulation rates increased, coinciding with a cooling event in Osaka Bay. The WM intensification event lasted about 5000 years across an SM peak, during which the Earth's magnetic dipole field weakened to <25% of its present strength and the GCR flux increased by more than 50%. Thus, the WM intensification likely resulted from the increased land-ocean temperature gradient originating with the strong Siberian High that resulted from the umbrella effect of increased low-cloud cover through an increase in GCR flux.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599209PMC
http://dx.doi.org/10.1038/s41598-019-45466-8DOI Listing

Publication Analysis

Top Keywords

winter monsoon
8
monsoon geomagnetic
8
geomagnetic reversal
8
reversal transition
8
earth's magnetic
8
magnetic dipole
8
dipole field
8
gcr-induced cloud
8
monsoon
5
intensified east
4

Similar Publications

The atmospheric dicarboxylic acids (DCAs) have a significant impact on the climate and indirectly affect human health, making them important organic substances. PM bound DCAs were analysed for Jorhat, India, 2019. In addition to the temporal variability, seasonal variation throughout the year and the impact of varying meteorological factors on DCAs concentration have also been studied.

View Article and Find Full Text PDF

Background Objectives: Co-infection of dengue virus and acute hepatitis A virus in paediatric population is a major health concern in endemic countries. This cross sectional retrospective study was conducted to evaluate the prevalence of hepatitis A virus among the clinically dengue suspected paediatric cases presented at our tertiary care centre during the two-year period (2022-2023).

Methods: A total of 747 dengue suspected paediatric clinical specimens were included in this study.

View Article and Find Full Text PDF

The western Indian continental shelf (eastern Arabian Sea) exhibits contrasting biogeochemical features. This area becomes highly productive due to summer monsoon-driven coastal upwelling in the south and winter monsoon-induced convective mixing in the north. Additionally, in the northern self, the eastern boundary of the Oxygen Minimum Zone (OMZ) persists but is absent in the south.

View Article and Find Full Text PDF

Factors influencing spatiotemporal variability of NO concentration in urban area: a GIS and remote sensing-based approach.

Environ Monit Assess

January 2025

Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.

The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density.

View Article and Find Full Text PDF

In the present study, we investigated the dinoflagellate assemblages in the upper water column (< 150-m depth), focusing on the suboxic waters of the eastern Arabian Sea (EAS) along 68°E from 8°N to 21°N during the southwest monsoon 2020 (SWM-2020). Dinoflagellate abundance was higher in the upper water column (0-80-m depth, mean ± SD = 411 ± 903 cells L) compared to deeper waters (80-150-m depth, mean ± SD = 128 ± 216 cells L). Among 11 identified taxonomic dinoflagellate orders, Peridinales were predominant in the upper waters column (71%, mean ± SD = 285 ± 858 cells L).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!