Calcium-Mediated Biophysical Binding of Cryptosporidium parvum Oocysts to Surfaces Is Sensitive to Oocyst Age.

Appl Environ Microbiol

Department of Materials Science & Engineering, Lehigh University, Bethlehem, Pennsylvania, USA

Published: September 2019

causes potentially life-threatening gastrointestinal disease in humans and may not be effectively removed from drinking water via conventional methods. Prior research has shown that environmental biofilms immobilize oocysts from the water column, but the biophysical mechanisms driving this attraction are still under investigation. This study investigates the affinity of oocysts to silanized surfaces. Surfaces were prepared with hydroxyl, amine, and carboxyl moieties. Binding forces between the oocysts and these engineered substrates were analyzed, with and without divalent ions, using atomic force microscopy. Binding forces were measured over several weeks to investigate the influence of age on adhesion. oocysts bind most strongly to carboxylic acid functional groups, with rupture forces greater than that required to break noncovalent molecular bonds, regardless of oocyst age. This adhesion is shown to be due to divalent cation bridging mechanisms. In addition, the binding strength increases over a 5-week period as the oocysts age, followed by a decrease in the binding strength, which may be related to structural or biochemical changes in the outer wall-bound glycosylated proteins. This study sheds new light on the biochemical parameters that influence oocyst binding to surfaces. Increased understanding of how age and water chemistry influence the binding strength of oocysts may inform future developments in environmental detection and drinking water treatment, such as with the development of oocyst-specific sensors that allow for more frequent tracking of oocysts in the environment. The mechanisms by which pathogens bind to surfaces are of interest to a wide variety of scientific communities, as these mechanisms drive infectivity, fate, and transport of the pathogenic organisms. This study begins to reveal the mechanism of direct binding of to surfaces containing both carboxylic acid and amine moieties, in an attempt to understand how much of the binding ability is due to long-range electrostatic forces versus other mechanisms (specific or nonspecific) of bonding. In addition to improving the scientific understanding of fate and transport of oocysts, an expanded understanding of the binding mechanisms may aid in the development of new tools and sensors designed to detect and track oocysts in waterways. Furthermore, the methods used to examine binding in this study could be translated to other waterborne pathogens of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696973PMC
http://dx.doi.org/10.1128/AEM.00816-19DOI Listing

Publication Analysis

Top Keywords

binding strength
12
binding
11
oocysts
10
oocyst age
8
drinking water
8
binding forces
8
age adhesion
8
carboxylic acid
8
binding surfaces
8
fate transport
8

Similar Publications

PRA-MutPred: Predicting the Effect of Point Mutations in Protein-RNA Complexes Using Structural Features.

J Chem Inf Model

January 2025

Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India.

Interactions between proteins and RNAs are essential for the proper functioning of cells, and mutations in these molecules may lead to diseases. These protein mutations alter the strength of interactions between the protein and RNA, generally described as binding affinity (Δ). Hence, the affinity change upon mutation (ΔΔ) is an important parameter for understanding the effect of mutations in protein-RNA complexes.

View Article and Find Full Text PDF

The design of well-engineered bifunctional electrocatalysts is crucial for achieving durable and efficient performance in overall water splitting. In this study, Ru-doped FeMn-MOF-74 itself has Ru sites and generates FeMnOOH under catalytic conditions, forming dual active sites for overall water splitting. Density functional theory (DFT) calculations demonstrate that the Ru dopants exhibit optimized binding strength for H* and enhanced hydrogen evolution reaction (HER) performance.

View Article and Find Full Text PDF

Using the first principle calculations, we propose a boron and nitrogen cluster incorporated graphene system for efficient valley polarization. The broken spatial inversion symmetry results in high Berry curvature at and valleys of the hexagonal Brillouin zone in this semiconducting system. The consideration of excitonic quasiparticles within the approximation along with their scattering processes using the many-body Bethe-Salpeter equation gives rise to an optical gap of 1.

View Article and Find Full Text PDF

The objective of this study was to substitute partially fat with pea protein isolate (PP)/rutin (Ru) complexes to produce a healthy and stable low-fat whipped cream. Ru enhanced the foam properties of PP. The Ru binding equivalent was the best at a mass ratio of PP/Ru of 64:4, the PP/Ru complexes particle size was the smallest.

View Article and Find Full Text PDF

Accurate prediction of ligand-receptor binding affinity is crucial in structure-based drug design, significantly impacting the development of effective drugs. Recent advances in machine learning (ML)-based scoring functions have improved these predictions, yet challenges remain in modeling complex molecular interactions. This study introduces the AGL-EAT-Score, a scoring function that integrates extended atom-type multiscale weighted colored subgraphs with algebraic graph theory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!