Red wines injected with nitrogen or oxygen during fermentation were used to identify the effect of gas exposure on tannin structure and reactivity with poly-l-proline. Tannin was purified from wine after fermentation and after three years of bottle storage. Tannin from nitrogen-treated wine had a lower percentage of galloylation and were less pigmented than tannin from oxygen-exposed wine. Self-aggregation of tannin was measured by nanoparticle tracking analysis and a larger particle size was observed for the oxidized treatment. The interaction of tannin and poly-l-proline was measured by isothermal titration calorimetry, and involved more hydrogen bonding than hydrophobic interactions in the case of nitrogen-treated wine tannin. Conversely, oxidized tannin was more hydrophobic and the association with poly-l-proline was entropy-driven due to a change of solvation. The results show meaningful changes in the structure and reactivity of tannin as a result of oxygen exposure during fermentation, which may impact astringency perception.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2019.05.197 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!