Quanta Image Sensor (QIS) is a single-photon detector designed for extremely low light imaging conditions. Majority of the existing QIS prototypes are monochrome based on single-photon avalanche diodes (SPAD). Passive color imaging has not been demonstrated with single-photon detectors due to the intrinsic difficulty of shrinking the pixel size and increasing the spatial resolution while maintaining acceptable intra-pixel cross-talk. In this paper, we present image reconstruction of the first color QIS with a resolution of 1024 × 1024 pixels, supporting both single-bit and multi-bit photon counting capability. Our color image reconstruction is enabled by a customized joint demosaicing-denoising algorithm, leveraging truncated Poisson statistics andvariance stabilizing transforms. Experimental results of the new sensor and algorithm demonstrate superior color imaging performance for very low-light conditions with a mean exposure of as low as a few photons per pixel in both real and simulated images.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.017298 | DOI Listing |
PLoS Biol
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
The organization of the human genome in space and time is critical for transcriptional regulation and cell fate determination. However, robust methods for tracking genome organization or genomic interactions over time in living cells are lacking. Here, we developed a multicolor DNA labeling system, ParSite, to simultaneously track triple genomic loci in the U2OS cells.
View Article and Find Full Text PDFImages are important information carriers in our lives, and images should be secure when transmitted and stored. Image encryption algorithms based on chaos theory emerge in endlessly. Based on previous various chaotic image fast encryption algorithms, this paper proposes a color image sector fast encryption algorithm based on one-dimensional composite sinusoidal chaotic mapping.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", University of Catania, Catania, Italy.
Background: To date, few data to transcranial Doppler sonography (TCD) are available in patients with mild vascular cognitive impairment (VCI) at risk for vascular or mixed dementia. In a previous study in patients with mild VCI and cerebral small vessels disease, a hemodynamic pattern of cerebral hypoperfusion and enhanced vascular resistance were observed; however, longitudinal data are currently lacking. Here, we perform a clinical, psychopathological, and neurosonological follow-up of patients with VCI in order to monitor any progression and to identify TCD measures to detect it.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
This paper demonstrates the use of organic thin-film transistors (OTFTs) to drive active digital mini light-emitting diode (mini-LED) backlights, aiming to achieve exceptional display performance. Our findings reveal that OTFTs can effectively power mini-LED backlights, reaching brightness levels exceeding 100,000 nits. This approach not only enhances image quality but also improves energy efficiency.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden.
is known as a northern-hemisphere-distributed genus with important economic values, especially in Western China. However, its species diversity in Asia and the phylogeny of this genus have not been critically studied. Based on worldwide sampling and multi-locus DNA sequence data (ITS, LSU, , ), the phylogeny of was reconstructed, and the species diversity in Asia was critically studied on the basis of morphology and phylogeny.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!