Three of the headings of Table 1, which have been switched by mistake in our paper, are corrected here. The rest of the paper, including all results and conclusions, remain intact.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.018958DOI Listing

Publication Analysis

Top Keywords

electron acceleration
4
acceleration radially-polarized
4
radially-polarized laser
4
laser pulse
4
pulse plasma
4
plasma micro-channel
4
micro-channel erratum
4
erratum three
4
three headings
4
headings table
4

Similar Publications

Porous KTi(PO) nanoparticles are synthesized via a solvothermal method and subsequently modified with nitrogen-doped carbon layers by using polydopamine as the carbon source. The resultant KTi(PO)@N-doped carbon composite (KTP@NC) exhibits a preserved porous structure with abundant pores, facilitating ion diffusion and electrolyte infiltration. Various characterizations, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy, reveal the successful formation of an interconnected nitrogen-doped carbon network.

View Article and Find Full Text PDF

Photodegradation of antibiotics based on photocatalytic semiconductors is a promising option to alleviate water pollution. Despite its limitations, TiO-based photocatalysts are still the most widely studied materials for pollutant degradation. In this work, a pomegranate-like g-CN/C/TiO nano-heterojunction was constructed using the hydrothermal-calcination method, consisting of interconnected small crystals with a dense structure and closely contacted interface.

View Article and Find Full Text PDF

ConspectusAromatic functionalization reactions are some of the most fundamental transformations in organic chemistry and have been a mainstay of chemical synthesis for over a century. Reactions such as electrophilic and nucleophilic aromatic substitution (EAS and SAr, respectively) represent the two most fundamental reaction classes for arene elaboration and still today typify the most utilized methods for aromatic functionalization. Despite the reliable reactivity accessed by these venerable transformations, the chemical space that can be accessed by EAS and SAr reactions is inherently limited due to the electronic requirements of the substrate.

View Article and Find Full Text PDF

Novel therapeutic strategies are essential for enhancing efficacy and accelerating the treatment of diabetes mellitus. This investigation focused on incorporating empagliflozin into a composite of polylactic acid and polycaprolactone, resulting in the fabrication of drug-loaded fibrous patches (DFPs) for transdermal application, both by electrospinning (ES) and by pressurized gyration (PG). Scanning electron microscopy results revealed that DFPs generated through the PG method exhibited smaller diameters and a larger surface area than ES.

View Article and Find Full Text PDF

Young fibroblast-derived migrasomes alleviate keratinocyte senescence and enhance wound healing in aged skin.

J Nanobiotechnology

March 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.

Background: Alterations in intercellular communication driven by cellular senescence constitute an important factor in skin aging. Migrasome, a newly discovered vesicular organelle, efficiently participates in intercellular communication; however, the relationship between cellular senescence and migrasomes remains unreported.

Objective: This study aims to explore the possible relationship between cellular senescence and migrasomes formation, and investigate the effects of young fibroblast-derived migrasomes on senescent keratinocytes and wound healing in aged skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!