In this work, we investigate the evanescent field sensing mechanism provided by an all-dielectric metasurface supporting bound states in the continuum (BICs). The metasurface is based on a transparent photonic crystal with subwavelength thickness. The BIC electromagnetic field is localized along the direction normal to the photonic crystal nanoscale-thin slab (PhCS) because of a topology-induced confinement, exponentially decaying in the material to detect. On the other hand, it is totally delocalized in the PhCS plane, which favors versatile and multiplexing sensing schemes. Liquids with different refractive indices, ranging from 1.33 to 1.45, are infiltrated in a microfluidic chamber bonded to the sensing dielectric metasurface. We observe an experimental exponential sensitivity leading to differential values as large as 226 nm/RIU with excellent FOM. This behavior is explained in terms of the physical superposition of the field with the material under investigation and supported by a thorough numerical analysis. The mechanism is then translated to the case of molecular adsorption where a suitable theoretical engineering of the optical structure points out potential sensitivities as large as 4000 nm/RIU.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.018776 | DOI Listing |
J Environ Radioact
January 2025
Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7070, 750 07, Uppsala, Sweden.
In this study, the long-term transfer of Cs from soil to grass on Swedish farms and fields, heavily contaminated after the 1986 radioactive fallout, was investigated. The study spans over 8-14 years, beginning in June 1986, and covers various soil types and agricultural practices. The transfer of Cs from soil to grass was highly variable, with transfer factors ranging from 1.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
Nucleic acid aptamers are single-stranded oligonucleotides that are selected through exponential enrichment (SELEX) technology from synthetic DNA/RNA libraries. These aptamers can specifically recognize and bind to target molecules, serving as specific recognition elements. Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive, non-destructive analytical technique that can rapidly acquire the "fingerprint information" of the measured molecules.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
School of Computer Science, Shaanxi Normal University, Xi'an 710062, China.
With the development and application of the Internet of Things (IoT), the volume of data generated daily by IoT devices is growing exponentially. These IoT devices, such as smart wearable devices, produce data containing sensitive personal information. However, since IoT devices and users often operate in untrusted external environments, their encrypted data remain vulnerable to potential privacy leaks and security threats from malicious coercion.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
Non-linear least squares (NLS) methods are commonly used for quantitative magnetic resonance imaging (MRI), especially for multi-exponential T1ρ mapping, which provides precise parameter estimation for different relaxation models in tissues, such as mono-exponential (ME), bi-exponential (BE), and stretched-exponential (SE) models. However, NLS may suffer from problems like sensitivity to initial guesses, slow convergence speed, and high computational cost. While deep learning (DL)-based T1ρ fitting methods offer faster alternatives, they often face challenges such as noise sensitivity and reliance on NLS-generated reference data for training.
View Article and Find Full Text PDFFront Oral Health
January 2025
Department of Microbiology, Virology and Immunology, Poltava State Medical University, Poltava, Ukraine.
Unlabelled: Today, about 15.0% of odontogenic pathology is caused by (). The aim of the study was to predict the development of antimicrobial resistance of based on retrospective data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!