Designing reconfigurable metasurfaces that can dynamically control scattered electromagnetic waves and work in the near-infrared (NIR) and optical regimes remains a challenging task, which is hindered by the static material property and fixed structures. Phase change materials (PCMs) can provide high contrast optical refractive indexes at high frequencies between amorphous and crystal states, therefore are promising as feasible materials for reconfigurable metasurfaces. Here, we propose a hybrid metasurface that can arbitrarily modulate the complex amplitude of incident light with uniform amplitude and full 2π phase coverage by utilizing composite concentric rings (CCRs) with different ratios of gold and PCMs. Our designed metasurface possesses a bi-functionality that is capable of splitting beams or generating vortex beams by thermal switching between metal and semiconductor states of vanadium oxide (VO), respectively. It can be easily integrated into low loss photonic circuits with an ultra-small footprint. Our metadevice serves as a novel paradigm for active control of beams, which may open new opportunities for signal processing, memory storage, holography, and anti-counterfeiting.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.018740DOI Listing

Publication Analysis

Top Keywords

reconfigurable metasurfaces
8
dynamic control
4
control mode
4
mode modulation
4
modulation spatial
4
spatial multiplexing
4
multiplexing hybrid
4
hybrid metasurfaces
4
metasurfaces designing
4
designing reconfigurable
4

Similar Publications

A core dielectric cylindrical rod wrapped in a dielectric circular pipe whose outer surface is enclosed by a helical conducting strip grating that is skewed along the axial direction is herein analyzed using the asymptotic strip boundary conditions along with classical vector potential analysis. Targeted for use as a cylindrical holographic antenna, the resultant field solutions facilitate the aperture integration of the equivalent cylindrical surface currents to obtain the radiated far fields. As each rod section of a certain skew angle exhibits a distinct modal attribute; this topology allows for the distribution of the cylindrical surface impedance via the effective refractive index to be modulated, as in gradient-index (GRIN) materials.

View Article and Find Full Text PDF

Deformation-Induced Electromagnetic Reconfigurable Square Ring Kirigami Metasurfaces.

Micromachines (Basel)

December 2024

Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China.

The continuous expansion of wireless communication application scenarios demands the active tuning of electromagnetic (EM) metamaterials, which is essential for their flexible adaptation to complex EM environments. However, EM reconfigurable systems based on intricate designs and smart materials often exhibit limited flexibility and incur high manufacturing costs. Inspired by mechanical metastructures capable of switching between multistable configurations under repeated deformation, we propose a planar kirigami frequency selective surface (FSS) that enables mechanical control of its resonant frequency.

View Article and Find Full Text PDF

A Wide Passband Frequency-Selective Surface with a Sharp Roll-Off Band Using the Filtering Antenna-Filtering Antenna Method.

Materials (Basel)

December 2024

Key Laboratory of Near-Range RF Sensing ICs and Microsystems (NJUST), Ministry of Education, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Frequency-selective surfaces (FSSs) have attracted great attention owing to their unique feature to manipulate transmission performance over the frequency domain. In this work, a filtering antenna-filtering antenna (FA-FA) FSS with a wide passband and double-side sharp roll-off characteristics is presented by inter-using the filtering antenna and receiving-transmitting metasurface methods. First, a dual-polarized filtering antenna element was designed by employing a parasitic band-stop structure with an L-probe feed.

View Article and Find Full Text PDF

Organic Metasurfaces with Contrasting Conducting Polymers.

Nano Lett

January 2025

Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.

Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies.

View Article and Find Full Text PDF
Article Synopsis
  • The paper discusses a scalable metasurface design tailored for 5G and future wireless communications, using simple passive elements.
  • Its single-layer configuration allows for easier integration with current B5G infrastructure and new intelligent surface technologies like Reconfigurable Intelligent Surfaces (RIS).
  • The metasurface's dual-polarization feature improves signal stability and performance, with theoretical and experimental results supporting its effectiveness for modern communication challenges.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!