We present an experimental study of complex noise-like pulse dynamics in a passively mode-locked figure-eight fiber laser, by performing simultaneous temporal and spectral mapping of the waveform sequences. The simultaneous measurements allow us to relate temporal and spectral events. We found in particular that the evolution of energy and of temporal features such as the number and width of the wave packets is correlated to spectral variations, namely of the central wavelength and bandwidth of the instantaneous spectrum. The simultaneous temporal and spectral measurements also allowed a substantial improvement in the precision of the latter, which was performed using the dispersive Fourier transform method. In particular, this enhanced precision allowed measuring the subtle spectral differences between the two laser outputs and tracking their evolution over the cycles, providing crucial information that allowed to determine the physical phenomena involved in the observed dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.017521 | DOI Listing |
Taiwan J Ophthalmol
October 2024
Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
This report describes a patient with polypoidal choroidal vasculopathy (PCV) with fovea-involving retinal pigment epithelium (RPE) tear that showed tissue remodeling with a good visual outcome. Imaging over the patient's clinical course from 2019 was reviewed. A 74-year-old female presented with left submacular hemorrhage and a large multi-lobular pigment epithelial detachment.
View Article and Find Full Text PDFIBRO Neurosci Rep
June 2025
Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Autonomous Sensory Meridian Response (ASMR) is an audio-visual phenomenon that has recently become popular. Many people have reported experiencing a tingling-like sensation through their body while watching audio/video clips known as ASMR clips. People capable of having such experiences have also reported improved overall well-being and feeling relaxed.
View Article and Find Full Text PDFHealth Inf Sci Syst
December 2025
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650504 Yunnan China.
For diagnosing mental health conditions and assessing sleep quality, the classification of sleep stages is essential. Although deep learning-based methods are effective in this field, they often fail to capture sufficient features or adequately synthesize information from various sources. For the purpose of improving the accuracy of sleep stage classification, our methodology includes extracting a diverse array of features from polysomnography signals, along with their transformed graph and time-frequency representations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.
Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.
View Article and Find Full Text PDFNeuroimage
January 2025
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA. Electronic address:
Noninvasive brain stimulation of the primary motor cortex has been shown to alter therapeutic outcomes in stroke and other neurological conditions, but the precise mechanisms remain poorly understood. Determining the impact of such neurostimulation on the neural processing supporting motor control is a critical step toward further harnessing its therapeutic potential in multiple neurological conditions affecting the motor system. Herein, we leverage the excellent spatio-temporal precision of magnetoencephalographic (MEG) imaging to identify the spectral, spatial, and temporal effects of high-definition transcranial direct current stimulation (HD-tDCS) on the neural responses supporting motor control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!