The ability to completely characterize the state of a system is an essential element for the emerging quantum technologies. Here, we present a compressed-sensing-inspired method to ascertain any rank-deficient qudit state, which we experimentally encode in photonic orbital angular momentum. We efficiently reconstruct these qudit states from a few scans with an intensified CCD camera. Since it only requires a small number of intensity measurements, our technique provides an easy and accurate way to identify quantum sources, channels, and systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.017426 | DOI Listing |
Background: Phase four of the Alzheimer's Disease Neuroimaging Initiative (ADNI4) began in 2023. This time-period corresponded to MRI vendors introducing product sequences with compressed sensing (CS), cross-vendor adoption of arterial spin-labelling (ASL) and multi-band slice excitation, and hardware improvements (head-coils, increased gradient amplitudes). These advances enabled the acquisition of new imaging measures and reduced scan times.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA.
Background: In 2016, we introduced the Bayesian Monte Carlo analysis of multicomponent-driven equilibrium observation of T and T (BMC-mcDESPOT) MRI method for myelin water fraction (MWF) mapping, a surrogate of myelin content. While BMC-mcDESPOT has been extensively applied to study brain aging, dementias, and risk factors influencing myelination, it still requires a lengthy acquisition time (∼17 min) which hampers its integration in clinical studies and trials. In this study, we aim to accelerate the BMC-mcDESPOT method for whole brain, high-resolution, MWF mapping within clinically feasible scan time of ∼6 min.
View Article and Find Full Text PDFBackground: Phase four of the Alzheimer's Disease Neuroimaging Initiative (ADNI4) began in 2023. This time-period corresponded to MRI vendors introducing product sequences with compressed sensing (CS), cross-vendor adoption of arterial spin-labelling (ASL) and multi-band slice excitation, and hardware improvements (head-coils, increased gradient amplitudes). These advances enabled the acquisition of new imaging measures and reduced scan times.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA.
Background: In 2016, we introduced the Bayesian Monte Carlo analysis of multicomponent-driven equilibrium observation of T1 and T2 (BMC-mcDESPOT) MRI method for myelin water fraction (MWF) mapping, a surrogate of myelin content. While BMC-mcDESPOT has been extensively applied to study brain aging, dementias, and risk factors influencing myelination, it still requires a lengthy acquisition time (∼17 min) which hampers its integration in clinical studies and trials. In this study, we aim to accelerate the BMC-mcDESPOT method for whole brain, high-resolution, MWF mapping within clinically feasible scan time of ∼6 min.
View Article and Find Full Text PDFKorean J Radiol
January 2025
Research Scientist, AIRS Medical Inc., Seoul, Republic of Korea.
Objective: To evaluate the clinical efficacy of ultrafast dynamic contrast-enhanced (DCE)-MRI using a compressed sensing (CS) technique for differentiating benign and malignant soft-tissue tumors (STTs) and to evaluate the factors related to the grading of malignant STTs.
Materials And Methods: A total of 165 patients (96 male; mean age, 61 years), comprising 111 with malignant STTs and 54 with benign STTs according to the 2020 WHO classification, underwent DCE-MRI with CS between June 2018 and June 2023. The clinical, qualitative, and quantitative parameters associated with conventional MRI were also obtained.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!