Identification of an acetonitrile addition impurity formed during peptide disulfide bond reduction using dithiothreitol and Tris(2-carboxyethyl)phosphine.

J Pharm Biomed Anal

Small Molecule Analytical Chemistry, Genentech, Inc., So. San Francisco, CA 94080, United States. Electronic address:

Published: September 2019

Identification and localization of modifications in peptides containing multiple disulfide bonds is challenging due to inefficient fragmentation in mass spectrometry (MS) analysis. In cases where MS fragmentation techniques such as electron capture dissociation (ECD), electron transfer dissociation (ETD), and ultraviolet photodissociation (UVPD) fail to achieve efficient fragmentation, off-line disulfide bond reduction techniques are typically employed prior to MS analysis. Some commonly used reducing agents include dithiothreitol (DTT) and tris(2-carboxyethyl)phosphine (TCEP). In this work, we describe the detection and identification of an unexpected impurity that formed during the reduction of Peptide A, containing multiple disulfide bonds, while using DTT or TCEP as reducing agents and acetonitrile as a co-solvent. The DTT reduced products were found to be a mixture of the expected linear Peptide A (fully reduced) and an unknown product (>50%) with a mass corresponding to linear Peptide A plus 41 Da ([reduced-M + 41]). A series of experiments were subsequently performed to investigate the identity and origin of this impurity. Disulfide bond reduction with DTT was performed in aqueous mixtures containing acetonitrile, methanol, and deuterated acetonitrile; and with TCEP in aqueous mixtures containing acetonitrile. Additionally, glycine amino acid was used as a surrogate to investigate the mechanism. The liquid chromatography-mass spectrometry (LCMSMS) results demonstrated that the [reduced-M + 41] impurity was an acetonitrile addition on the peptide's N-terminal glycine. The corresponding impurity [M + 41] was also found in the native Peptide A (non-reduced), suggesting that small amounts of this impurity may also be generated during the synthesis in the upstream process steps. By understanding the formation of this process-related impurity [M + 41], one could potentially reduce or eliminate its presence in Peptide A through chemical controls. Finally, this observation provides caution against using acetonitrile as a co-solvent during DTT- or TCEP-promoted reduction of peptides with an uncapped N-terminus primary amine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2019.06.020DOI Listing

Publication Analysis

Top Keywords

disulfide bond
12
bond reduction
12
acetonitrile addition
8
impurity formed
8
multiple disulfide
8
disulfide bonds
8
reducing agents
8
acetonitrile co-solvent
8
linear peptide
8
aqueous mixtures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!