Globally, there are increased threats to available freshwater resources due to pollution, climate change, and increased demand from population growth. Phosphorus is one of the essential nutrients required for animal and plant growth. However, when it is released into freshwater resources in excess amounts, it can become a pollutant through eutrophication. This study aimed to enhance the removal of phosphate from water using modified coal. The coal was magnetised by in-situ synthesis using a precipitation technique. To obtain functional groups and mechanical stability, magnetised coal particles were coated with polyaniline, via the polymerisation of aniline to form Magnetised Unburnt Coal Polyaniline (MUC-PANI). The properties of MUC-PANI were investigated using TGA, BET, XRD, Raman spectroscopy, SEM, and FTIR. TGA reviewed MUC-PANI as 58% magnetised coal and 42% polyaniline, while the specific surface area increased from 30.0 to 42.2 m/g after modification. SEM indicated a cauliflower structure on the surface of MUC-PANI due to the successful polymerisation of polyaniline. The FTIR spectrum showed successful adsorption of phosphate due to the formation of incipient peak at1008 cm. The adsorption kinetic data are better fitted to the Elovich model. The Langmuir adsorption capacity of MUC-PANI is 147.1 mg PO/g at 25 °C and pH 5.0 (initial concentration 10-200 mg/L, dose 0.8 g/L). MUC-PANI is a cost-efficient compound for removal of phosphate because it is made from readily available coal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2019.06.088 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!