Collagen, chitosan and hyaluronic acid based multicomponent injectable and in situ gellating biomimetic hybrid materials for bone tissue engineering applications were prepared in one-step procedure. The bioactive phase in the form of surface-modified silica particles was introduced to the solutions of biopolymers and simultaneously crosslinked with genipin both the biopolymer matrix and dispersed particles at 37 °C. The novel approach presented here involved the use of silica particles which surfaces were priory functionalized with amino groups. That modification makes possible the covalent attachment of silica particles to the polymeric hydrogel network on crosslinking with genipin. That methodology is especially important as it makes possible to obtain the hybrid materials (biopolymer-silica particles) in which the problems related to the potential phase separation of mineral particles, hindering their in vivo application can be eliminated. The hybrids of various compositions were obtained and their physicochemical and biological properties were determined. The in vitro experiments performed under simulated body fluid conditions revealed that the amino-functionalized silica particles covalently attached to the biopolymeric network are still bioactive. Finally, the in vitro cell culture studies shown that the materials developed are biocompatible as they supported MG-63 cells adhesion, proliferation as well as Alkaline phosphatase (ALP) expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.06.184DOI Listing

Publication Analysis

Top Keywords

silica particles
20
covalent attachment
8
surface-modified silica
8
particles
8
hybrid materials
8
silica
5
genipin crosslinked
4
crosslinked bioactive
4
bioactive collagen/chitosan/hyaluronic
4
collagen/chitosan/hyaluronic acid
4

Similar Publications

Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

A hybrid coating made of poly (methyl methacrylate) with SiO2-TiO2 particles (PMMA/SiO2-TiO2) has been developed for use as a coating on nanosatellites, evaluating its resistance to high vacuum by quantifying its weight loss. The coating was applied on an Al 7075 aluminum substrate used for the aerospace sector. PMMA/SiO2-TiO2 hybrid coatings were prepared using sol-gel reaction in situ assisted with sonochemistry.

View Article and Find Full Text PDF

Hydrate-based carbon capture and storage (HBCS) is a sustainable and promising approach to combating global warming by utilizing water, which is a ubiquitous resource. Here, we report a comprehensive study of CO hydrate formation in dry water (DW), a water-in-air dispersion confined in silica particles, for improving the kinetics of hydrate growth. Utilizing a combination of a home-built high-pressure reactor, in situ Raman spectroscopy, and powder X-ray diffraction (PXRD), we elucidate the crystal structure, growth dynamics, and morphology of CO hydrates formed in DW, with and without the kinetic hydrate promoter, l-tryptophan.

View Article and Find Full Text PDF

Glassy Dynamics and Local Crystalline Order in Two-Dimensional Amorphous Silica.

J Phys Chem B

January 2025

Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151 Trieste, Italy.

We reassess the modeling of amorphous silica bilayers as a 2D classical system whose particles interact with an effective pairwise potential. We show that it is possible to reparametrize the potential developed by Roy, Heyde, and Heuer to quantitatively match the structural details of the experimental samples. We then study the glassy dynamics of the reparametrized model at low temperatures.

View Article and Find Full Text PDF

Synthesis of anisotropic silica nanoparticles by organic amine with diverse structures.

Nanotechnology

January 2025

School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China.

Herein, we synthesized anisotropic silica nanoparticles (AISNPs) with organic amines with different structures. Monoamines and diamines with distance between amine groups shorter than4 Å have been observed to facilitate the formation of isotropic silica nanoparticles (ISNPs). AISNPs were synthesized with diamines with distance between amine groups longer than4 Å and linear structures of triamines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!