Physical and psychosocial maltreatment experienced before the age of 18, termed early life adversity (ELA), affects an estimated 39% of the world's population, and has long-term detrimental health and psychological outcomes. While adult phenotypes vary following ELA, inflammation and altered stress responsivity are pervasive. Cytokines, most notably tumor necrosis factor (TNF), are elevated in adults with a history of ELA. While soluble TNF (solTNF) drives chronic inflammatory disease, transmembrane TNF facilitates innate immunity. Here, we test whether solTNF mediates the behavioral and molecular outcomes of adolescent psychological stress by administering a brain permeable, selective inhibitor of solTNF, XPro1595. Male and female C57BL/6 mice were exposed to an aggressive rat through a perforated translucent ball ('predatory stress') or transported to an empty room for 30 min for 30 days starting on postnatal day 34. Mice were given XPro1595 or vehicle treatment across the last 15 days. Social interaction, sucrose preference, and plasma inflammation were measured at 2 and 4 weeks, and open field behavior, adiposity, and neuroinflammation were measured at 4 weeks. Chronic adolescent stress resulted in increased peripheral inflammation and dysregulated neuroinflammation in adulthood in a sex-specific manner. Abnormal social and open field behavior, fat pad weight, and fecal boli deposition were noted after 30 days; solTNF antagonism ameliorated the effects of stress. Together, these data support our hypothesis, and suggest that targeting solTNF with XPro1595 may improve quality of life for individuals with a history of adolescent stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597195PMC
http://dx.doi.org/10.1016/j.bbi.2019.06.027DOI Listing

Publication Analysis

Top Keywords

psychological stress
8
tumor necrosis
8
necrosis factor
8
soltnf xpro1595
8
measured 4 weeks
8
open field
8
field behavior
8
adolescent stress
8
stress
6
soltnf
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!