Directing the fate of mesenchymal stem cells (MSCs) to dopaminergic neurons has great importance in both biomedical studies and cell therapy of Parkinson's disease. We recently generated dopamine-secreting cells from human adipose tissue-derived stem cells (hADSCs) by exposing the cells to a growth factor cocktail composed of SHH, bFGF, FGF8 and BDNF in low-serum condition. In the current study, we induced the cells by the same dopaminergic inducing cocktail in serum-free B27-supplemented Neurobasal medium. ADSCs differentiated in both conditions expressed several neuronal and dopaminergic markers. However, there were higher gene expression levels under the serum-free condition. Higher levels of TUJ1 and TH proteins were also detected in the cells exposed to the dopaminergic-inducing cocktail under serum-free Neurobasal condition. TH protein was expressed in about 28% and 60% of the cells differentiated in the low-serum and serum-free Neurobasal media, respectively. Moreover, the cells exposed to the dopaminergic-inducing cocktail in the serum-free Neurobasal condition released a more significant amount of dopamine in response to KCl-induced depolarization. Altogether, these findings show a greater efficiency of the serum-free Neurobasal condition for growth factor-directed differentiation of hADSCs to functional dopamine-secreting cells which may be valuable for transplantation therapy of Parkinson's disease in future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2019.134353 | DOI Listing |
Basic Clin Neurosci
March 2022
Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
Introduction: The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity.
Methods: In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on the dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepared by repeated freezing and thawing cycles.
J Neurochem
December 2021
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA.
It is increasingly recognized that brain microvascular endothelial cells (BMECs), the principal component of the blood-brain barrier (BBB), are highly sensitive to soluble cues from both the bloodstream and the brain. This concept extends in vitro, where the extracellular milieu can also influence BBB properties in cultured cells. However, the extent to which baseline culture conditions can affect BBB properties in vitro remains unclear, which has implications for model variability and reproducibility, as well as downstream assessments of molecular transport and disease phenotypes.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2021
School of Public Health, Bengbu Medical College, Bengbu 233030, China.
Objective: To explore whether procyanidin B2 (PCB2) regulates the P13K/Akt/Nrf2 signaling pathway to protect neurons from oxidative stress induced by cypermethrin (CYP).
Methods: Primary cultures of cerebral cortex neurons from C57BL/6 mice were randomly divided into 5 groups: normal control group (cultured in serum-free neurobasal-B27 medium), PCB2 treatment group(treated with 5 μg/mL PCB2 for 24 h), CYP exposure group(treated with 50 μmol/L CYP for 24 h), PCB2 pretreatment group(pretreated with 5 μg/mL PCB2 for 30 min followed by exposure to 50 μmol/L CYP for 24 h), and LY294002 treatment group (pretreated with 20 μmol/L LY294002 for 30 min before treatment with PCB2 for 30 min and then CYP for 24 h).CCK-8 assay was used to analyze the neuronal viability after the treatments.
Behav Brain Res
May 2021
ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran. Electronic address:
Human olfactory ecto-mesenchymal stem cells (hOE-MSCs) derived from the human olfactory mucosa (OM) can be easily isolated and expanded in cultures while their immense plasticity is maintained. To mitigate ethical concerns, the hOE-MSCs can be also transplanted across allogeneic barriers, making them desirable cells for clinical applications. The main purpose of this study was to evaluate the effects of administering the hOE-MSCs on a spinal cord injury (SCI) model of rats.
View Article and Find Full Text PDFJ Neuroinflammation
February 2021
Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!